Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:44:02.815Z Has data issue: false hasContentIssue false

Investigations on low temperature laser-generated plasmas

Published online by Cambridge University Press:  06 May 2008

F. Caridi*
Affiliation:
Dipartimento di Fisica, Messina, Italy and INFN-LNS and INFN Sezione di Catania (Gr. Coll. Messina), Catania, Italy
L. Torrisi
Affiliation:
Dipartimento di Fisica, Messina, Italy and INFN-LNS and INFN Sezione di Catania (Gr. Coll. Messina), Catania, Italy
D. Margarone
Affiliation:
Dipartimento di Fisica, Messina, Italy and INFN-LNS and INFN Sezione di Catania (Gr. Coll. Messina), Catania, Italy
A. Borrielli
Affiliation:
Dipartimento di Fisica, Messina, Italy and INFN-LNS and INFN Sezione di Catania (Gr. Coll. Messina), Catania, Italy
*
Address correspondence and reprint requests to: Francesco Caridi, Dipartimento di Fisica, Ctr. Papardo 31, 98166 S. Agata, Messina, Italy. E-mail: [email protected]

Abstract

A nanosecond pulsed Nd-Yag laser, operating at an intensity of about 109 W/cm2, was employed to irradiate different metallic solid targets (Al, Cu, Ta, W, and Au) in vacuum. The measured ablation yield increases with the direct current (dc) electrical conductivity of the irradiated target. The produced plasma was characterized in terms of thermal and Coulomb interaction evaluating the ion temperature and the ion acceleration voltage developed in the non-equilibrium plasma core. The particles emission produced along the normal to the target surface was investigated measuring the neutral and the ion energy distributions and fitting the experimental data with the “Coulomb-Boltzmann-shifted” function. Results indicate that the mean energy of the distributions and the equivalent ion acceleration voltage of the non-equilibrium plasma increase with the free electron density of the irradiated element.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bashir, S., Rafique, M.S. & Ul-Haq, F. (2007). Laser ablation of ion irradiated CR-39. Laser Part. Beams 25, 181191.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Conde, J.C., Lusquinos, F., Gonzalez, P., Serra, J., Leon, B., Cultrera, L., Guido, D. & Perrone, A. (2004). Laser ablation of silicon and copper targets. Experimental and finite elements studies. Appl. Phys. A. 79, 11051110.CrossRefGoogle Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q,. Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Hansen, T.N., Schou, J. & Lunney, J.G. (1997). Angular distributions of silver ions and neutrals emitted in vacuum by laser ablation. Europhys. Lett 40, 441446.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Lorazo, P., Lewis, L.J. & Meunier, M. (2006). Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys. Rev. B 73, xxxxxx.CrossRefGoogle Scholar
Nelea, V., Morosanu, C., Iliescu, M. & Mihailescu, I.N. (2004). Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study. Appl. Surf. Sci. 228, 346356.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Shirkov, G.D. & Zschornak, G. (1996). Electron Impact Ion Sources for Charged Heavy Ions. Vieweg, Unknown City.CrossRefGoogle Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Torrisi, L., Borrielli, A. & Margarone, D. (2007). Study on the ablation threshold induced by pulsed lasers at different wavelengths. Nucl. Instr. & Meth. Phys. Res. Section B 255, 373379.CrossRefGoogle Scholar
Torrisi, L., Caridi, F., Margarone, D., Picciotto, A., Mangione, A. & Beltrano, J.J. (2006). Carbon-plasma produced in vacuum by 532 nm-3 ns laser pulses ablation. Appl. Surf. Sci. 252, 63836389.CrossRefGoogle Scholar
Torrisi, L., Caridi, F., Picciotto, A., Margarone, D. & Borrielli, A. (2006). Particle emission from tantalum plasma produced by 532 nm laser pulse ablation. Appl. Phys. 100, 9.CrossRefGoogle Scholar
Torrisi, L., Gammino, S., Ando, L. & Laska, L. (2002). Tantalum ions produced by 1064 nm pulsed laser irradiation. J. Appl. Phys 91, 46854692.CrossRefGoogle Scholar
Torrisi, L., Gammino, S., Ando, L., Nassisi, V., Doria, D. & Pedone, A. (2003). Comparison of nanosecond laser ablation at 1064 and 308 nm wavelength. Appl. Surf. Sci. 210, 262273.CrossRefGoogle Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Wieger, V., Strassl, M. & Wintner, E. (2006). Pico- and microsecond laser ablation of dental restorative materials. Laser Part. Beams 24, 4145.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Zschornak, G., Musiol, G. & Wagner, W. (1986). Dirac-Fock Slater X-ray Energy Shifts and Electron Binding Energy Changes for All Ion Ground States in Elements up to Uranium, 160255. Berlin: Akademie der Wissenschaften der DDR.Google Scholar