Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T15:32:59.835Z Has data issue: false hasContentIssue false

Improvements to ion-correlation experiments in dense plasmas

Published online by Cambridge University Press:  09 March 2009

B. A. Shiwai
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK
A. Djaoui
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK
T. A. Hall
Affiliation:
Department of Physics, University of Essex, Colchester, UK
G. J. Tallents
Affiliation:
Department of Physics, University of Essex, Colchester, UK
S. J. Rose
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK

Abstract

Improved measurements of ion-correlation effects in a dense shock-compressed plasma are presented. The extended X-ray-absorption fine-structure (EXAFS) technique on the aluminum K edge is used to observe the short-range order within a dense plasma. Densities of about three times solid density were measured with good accuracy. The experimental measurements of density give results that are in good agreement with the MEDUSA onedimensional fluid code predictions. The improved quality of the data enabled us to calculate the ion coupling parameter during the compression and the subsequent heating of the plasma. An estimation of the temperature is given on the basis of published models, and an approximate agreement is obtained with the MEDUSA code predictions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, R. C. et al. 1985 Phys. Rev. B 31, 3435.CrossRefGoogle Scholar
Brush, S. G. et al. 1966 J. Chem. Phys. 45, 2102.CrossRefGoogle Scholar
Christiansen, J. P. et al. 1974 Comput. Phys. Commun. 7, 271.CrossRefGoogle Scholar
Citrin, P. H. et al. 1976 Phys. Rev. 36, 1346.Google Scholar
Djaoui, A. et al. 1989 Plasma Phys. Controlled Fusion 31, 111.CrossRefGoogle Scholar
Eason, R. W. et al. 1984 J. Phys. C 17, 5067.CrossRefGoogle Scholar
Eason, R. W. et al. 1985 Appl. Phys. Lett. 47, 442.CrossRefGoogle Scholar
Geni, G. & Platzman, P. M. 1976 Phys. Rev. B 14, 1514.Google Scholar
Greaves, G. N. 1990 Private communication.Google Scholar
Hall, T. A. et al. 1988 Phys. Rev. Lett. 60, 2034.CrossRefGoogle Scholar
Kieffer, J. C. et al. 1989 Phys. Rev. Lett. 62, 760.CrossRefGoogle Scholar
Kincaid, B. M. & Eisenberger, P. M. 1975 Phys. Rev. Lett. 34, 1361.CrossRefGoogle Scholar
Kossel, W. 1920 Phys. Ber. 1, 119.Google Scholar
Lee, P. A. et al. 1975 Phys. Rev. B 11, 2795.CrossRefGoogle Scholar
Milchberg, H. M. et al. 1988 Phys. Rev. Lett. 61, 2364.CrossRefGoogle Scholar
More, R. M. et al. 1988 Phys. Fluids 31, 3059.CrossRefGoogle Scholar
Ross, I. N. et al. 1981 IEEE J. Quantum Electron. QE-17, 1653.CrossRefGoogle Scholar
Sayers, D. E. et al. 1979 J. Phys. B 12, 1889.Google Scholar
Shiwai, B. A. et al. 1988 Proc. Soc. Photo-Opt. Instrum. Eng. 913, 10.Google Scholar