Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T18:11:36.975Z Has data issue: false hasContentIssue false

Hydrodynamic evolution of laser driven diverging shock waves

Published online by Cambridge University Press:  09 March 2009

M. A. Harith
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R.-Via del Giardino, 7 56100 Pisa, Italy
V. Palleschi
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R.-Via del Giardino, 7 56100 Pisa, Italy
A. Salvetti
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R.-Via del Giardino, 7 56100 Pisa, Italy
D. P. Singh
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R.-Via del Giardino, 7 56100 Pisa, Italy
G. Tropiano
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R.-Via del Giardino, 7 56100 Pisa, Italy
M. Vaselli
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R.-Via del Giardino, 7 56100 Pisa, Italy

Abstract

Spherically symmetric shock waves have been produced via Nd3+ laser induced break-down in helium, nitrogen and air at pressures ranging from 760 Torr to 2300 Torr. The measurements are performed at different absorbed laser energies (E0 = 0.05 J to 2 J) at the center of the experimental spherical glass cell where the breakdown of the gas takes place. The temporal evolution of the shock wave followed by a double-pulse, doublewavelength holographic technique is described hydrodynamically well by the point strong explosion theory. The ambient gas counterpressure plays a negligible role in determining the shock wave motion even at low laser energy absorption (E0 ≤, 0.5 J), whereas it has an appreciable effect on the gas density jump at the shock wave itself. The experimental data on temporal evolution of the density jump of the gas and the corresponding theoretical profiles obtained adopting a non-self-similar solution at the same laser absorbed energy are found to be in good mutual agreement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fujimoto, Y. & Mishkin, E. A. 1978 Phys. Fluids 21 (11), 1933.CrossRefGoogle Scholar
Fujimoto, Y., Mishkin, E. A. & Alejaldre, C. 1983 Physica 115C, 271.Google Scholar
Guderley, G. 1942 Luftfahrtforschung 19, 302.Google Scholar
Harith, M. A. et al. 1988 Opt. Comm. 71, 76.CrossRefGoogle Scholar
Hohla, K. et al. 1969 Z. Naturforschung 24a, 1244.CrossRefGoogle Scholar
Kidder, R. E. 1974 Nuclear Fusion 14, 53.CrossRefGoogle Scholar
Kidder, R. E. 1976 Nuclear Fusion 16, 3.CrossRefGoogle Scholar
Loeb, A. et al. 1985 J. Appl. Phys. 57 (7), 2501.CrossRefGoogle Scholar
Panarella, E. 1987 J. of Fusion Energy 6 (3), 285.CrossRefGoogle Scholar
Sakurai, A. 1953 J. Phys. Soc. Japan 8 (5), 662.CrossRefGoogle Scholar
Sakurai, A. 1955 J. Phys. Soc. Japan 10, 827.CrossRefGoogle Scholar
Salzmann, D. et al. 1983 Phys. Rev. A 28 (3), 1738.CrossRefGoogle Scholar
Sedov, L. 1982 Similarity and Dimensional Methods in Mechanics (MIR Publishers, Moscow).Google Scholar
Stanyukovich, K. P. 1960 Unsteady Motion of Continuous Media (Pergamon Press, New York).Google Scholar
Sweeney, D. W. & Vest, C. M. 1973 Appl. Opt. 12, 2659.CrossRefGoogle Scholar
Zeldovich, Ya. B. & Raizer, Yu. P. 1967 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol II (Academic Press, New York).Google Scholar