Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T20:13:14.886Z Has data issue: false hasContentIssue false

High current ion beam RF acceleration and perspectives for an inertial fusion driver

Published online by Cambridge University Press:  25 March 2004

U. RATZINGER
Affiliation:
Institute for Applied Physics, J.W. Goethe-Universität, Frankfurt am Main, Germany
H. LIEBERMANN
Affiliation:
Institute for Applied Physics, J.W. Goethe-Universität, Frankfurt am Main, Germany
O. MEUSEL
Affiliation:
Institute for Applied Physics, J.W. Goethe-Universität, Frankfurt am Main, Germany
H. PODLECH
Affiliation:
Institute for Applied Physics, J.W. Goethe-Universität, Frankfurt am Main, Germany
R. TIEDE
Affiliation:
Institute for Applied Physics, J.W. Goethe-Universität, Frankfurt am Main, Germany
W. BARTH
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
W. VINZENZ
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany

Abstract

The actual situation with respect to the use of an RF linac driver for heavy ion inertial fusion (HIF) is discussed. At present, there is no high current heavy ion linac under construction. However, in the course of linac projects for e, p, d, or highly charged ions several developments were made, which may have some impact on the design of a HIF driver. Medium- and low-β superconducting structures suited for pulsed high current beam operation are actually designed and investigated at several laboratories. A superconducting 40 MeV, 125 mA cw linac for deuteron acceleration is designed for the Inertial Fusion Material Irradiation Facility (IFMIF). The Institute for Applied Physics (IAP) is developing a superconducting 350-MHz, 19-cell prototype CH-cavity for β = 0.1. The prototype cavity will be ready for tests in 2004. A superconducting main HIF driver linac would considerably reduce the power losses. Moreover, it would allow for an efficient linac operation at a higher duty factor.

The 1.4-AMeV room-temperature High Current Injector HSI at Gesellschaft für Schwerionenforschung (GSI) has been in routine operation for more than 2 years now. With a mass-to-charge ratio of up to 65, a current limit of 15 mA for U4+, and an energy range from 2.2 AkeV up to 1.4 AMeV, this linac is suited to gain useful experience on the way toward the design of a HIF RF driver. The status and technical improvements of that A/q ≤ 65, 91-MV linac are reported. Beam dynamics calculations for Bi1+-beams show that powerful focusing elements at the linac front end are the bottleneck with respect to a further increase in beam current. Besides superconducting and pulsed wire quadrupoles, the potential of the Gabor-plasma lenses is investigated.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barth, W., Dahl, L., Glatz, J., Groening, L. & Richter, S. (2002). Experiences during operation with high current U4+ beams in the new GSI high current injector. Proc. of the 2002 LINAC Conf., Gyeongju, Korea, pp. 349351.
Campisi, I.E. (2002). State of the Art Power Couplers for Superconducting RF Cavities. Proc. of the 2002 EPAC Conf., Paris, pp. 144148.
Ciovati, G., Kneisel, Brawley, P.J., Bundy, R., Campisi, I.E., Davis, K., Macha, K., Machie, D., Mammosser, J., Morgan, S., Sundelin, R., Turlington, L., Wilson, K.M., Sekutowicz, J., Barni, D., Pagani, C., Parodi, R., Pierini, P., Matsumoto, K., Mitchell, R., Schrage, D.L., Doleans, M., Kim, S.H., Mangra, D., &Yläoijala, P. (2001). Superconducting prototype cavities for the spallation neutron source (SNS) project. Proc. of the 2001 PAC, Chicago, pp. 484486.
Eichhorn, R., Ratzinger, U. & Liebermann, H. (2002). Superconducting CH-cavities for low- and medium beta ion and proton accelerators. Proc. of the 2002 LINAC Conf., Gyeongju, Korea, pp. 481483.
Faltens, A., Lietzke, A., Sabbi, G., Seidl, P., Lund, S., Manahan, B., Martovetsky, N., Gung, C., Minervini, J., Schultz, J., Myatt, L. & Meinke, R. (2002). Progress in the development of superconducting quadrupoles for heavy ion fusion. Laser Part. Beams 20, 617620.Google Scholar
Fortuna, G., Lombardi, A., Bassato, G., Battistella, A., Bellato, M., Bezzon, G., Bisoffi, G., Canella, S., Cavenago, M., Cervellera, F., Chiurlotto, F., Comunian, M., Cortese, R., Facco, A., Favaron, P., Moisio, M.F., Palmieri, V., Pengo, R., Pisent, A., Poggi, M., Porcellato, A.M. & Ziomi, L. (1996). The new superconducting positive ion injector for the Legnaro ALPI booster. Proc. of the 1996 LINAC Conf., Geneva, pp. 125127.
Jakob, A., Gabor, C., Klein, H., Meusel, O., Pozimski, J. & Ratzinger, U. (2002). H-LEBT in Frankfurt. Proc. of the 2002 EPAC Conf., Paris, pp. 19061908.
Liebermann, H., Ratzinger, U. & Vinzenz, W. (2002). Redesign of a voltage limiting gap at the GSI-HSI. GSI Scientific Report 2002, GSI 2003-01. Darmstadt, Germany: Gesellschaft für Schwerionenforschung.
Meusel, O., Pozimski, J., Jakob, A., Lakatos, A. & Klein, H. (2000). Low energy beam transport for heavy ions using space charge lenses. Proc. of the 2000 EPAC Conf., Vienna, Austria, pp. 22582260.
Mobley, R.M., Gammel, G. & Maschke, A.W. (1979). Gabor lenses. IEEE Trans. Nucl. Sci. NS-26, 31123114.Google Scholar
Ostroumov, P.N., Pardo, R.C., Zinkann, G.P., Shepard, K.W. & Nolen, J.A. (2001). Simultaneous acceleration of multiply charged ions through a superconducting linac. Phys. Rev. Lett. 86, 27982801.Google Scholar
Padamsee, H. (2001). Superconducting RF-mew dorectopms/ Proc. of the 2001 PAC Conf. Chicago, pp. 468472.
Ratzinger, U. (2001). Commissioning of the new GSI high current linac and HIF related RF linac aspects. Nucl. Instrum. Methods A 464, 636645.Google Scholar
Ratzinger, U., Gaiser, H., Kaspar, K., Minaev, S. & Krietenstein, B. (1999). Status of the 36 MHz linac cavities for the GSI high current injector. Proc of the 1999 PAC, New York, pp. 35523554.
Ratzinger, U. & Tiede, R. (1998). Status of the HIIF RF linac study based on H-mode cavities. Nucl. Instrum. Methods A 415, 229235.Google Scholar
Ratzinger, U. & Tiede, R. (2002). Low energy DTL sections for intense Bi1+ beams. Laser Part. Beams 20, 447450.Google Scholar
Sauer, A., Deitinghoff, H., Klein, H., Ratzinger, U., Tiede, R. & Eichhorn, R. (2002). Beam dynamics design of a superconducting 175 MHz CH-Linac for IFMIF. Proc. of the 2002 EPAC Conf., Paris, pp. 14041406.
Schmierer, E.N., Chan, K.C.D., Gautier, D.C., Gioia, J.G. Haynes, W.B., Krawczyk, F.L., Lujan, R.E., Madrid, M.A., Schrage, D.L., Smith, B.G., Waynert, J., &Rusnak, B. (2001). Results of the APT RF power coupler development for superconducting linacs. Proc. of the 2001 PAC Conf., Chicago, pp. 11101112.
Setzer, S., Weiland, T., Ratzinger, U. & Minaev, S. (2002). A chopped electron beam driver for H-type cavities. Proc. of the 2000 LINAC Conf., Monterey, pp. 10011003.
Shepard, K.W., Kedzie, M., Delayen, J.R., Piller, C. & Porcellato, A.M. (1998). Development of niobium spoke cavities for a superconducting light-ion linac. Proc. of the 1998 LINAC Conf., Chicago, pp. 956958.
Simrock, S.N. (2002). Lorentz force compensation of pulsed SRF cavities. Proc. of the 2002 LINAC Conf., Gyeongju, Korea, pp. 556560.
Vardanyan, A., Ayvazyan, V. & Simrock, S.N. (2002). An analysis tool for RF control for superconducting cavities. Proc. of the 2002 EPAC Conf., Paris, pp. 16731675.
Wangler, T. (1998). Principles of RF linear accelerators. New York: John Wiley & Sons.
Zaplatin, E., Braeutigam, M., Pop, M., Skrobucha, M. & Stassen, R. (2002). Low-beta SC H-cavity for ESS. Proc. of the 2002 EPAC Conf., Paris, pp. 23002301.