Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T07:40:55.869Z Has data issue: false hasContentIssue false

A hierarchy of nonlocal models for the radiative transfer equation

Published online by Cambridge University Press:  01 June 2004

J.-L. FEUGEAS
Affiliation:
Centre Lasers Intenses et Applications, UMR Commissariat à l'Energie Atomique–Centre National de la Recherche Scientifique–Université de Bordeaux 1, Talence Cedex, France

Abstract

For the classic diffusion description of radiative transfer, the specific intensity can be represented by a small angular deviation of the local Planckian equilibrium. In a transparent media, the angular anisotropy becomes strong and one has to solve the general transfer equation. We propose a hierarchy of models that can describe the regime that lies between those two limits. Every member of this family is hyperbolic, flux-limited, and possesses a locally dissipated entropy. This hierarchy also formally recovers the diffusion limit. This study demonstrates that the two-polynomial model is already capable of capturing strong anisotropies.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Audit, E., Charrier, P., Chièze, J.-P. & Dubroca, B. (2002). A radiation-hydrodynamics scheme valid from the transport to the diffusion limit. J. Comp. Phys. 20, 263.Google Scholar
Castor, J.I., Lutz, J.H. & Seaton, M.J. (1981). Ultraviolet spectra of planetary nebulae. Royal Astronomical Society, Monthly Notices 194, 547567.CrossRefGoogle Scholar
Charrier, P., Dubroca, B., Feugeas, J.L. & Mieussens, L. (1998). Modèles à vitesse discrètes pour le calcul d'ćoulements hors équilibre cinétique. C.R. Acad. Sci., Série 1 326, 13471352.Google Scholar
Charrier, P., Dubroca, B. & Feugeas, J.L. (1998). Levermore's Moment Method of Boltzmann Equation for Non-Equilibrium Kinetic Flows. R. Brun, R. Campargue, R. Gatignol, J.-C. Lengrand (Eds.). 21th International Symposium On Rarefied Gas Dynamic, >103, 1110. Marseille: Cépaduès Editions, Toulouse.
Dubroca, B. & Feugeas, J.-L. (1999). Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif. C.R. Acad. Sci., Série 1 329, 915920.Google Scholar
Dubroca, B. & Klar, A. (2002). Half moment closure for radiative transfer equations. J. Comp. Phys. 180, 113.CrossRefGoogle Scholar
Feugeas, J.-L. (1997). Etude numérique des systèmes aux moments de Levermore pour la modélisation d'écoulements hors equilibre cinétique. Thèse de l'Université de Bordeaux I.
Fort, J. (1997). Information-theoretical approach to radiative transfer. Physica A 243, 275303.CrossRefGoogle Scholar
Grad, H. (1949). On the kinetic theory of rarefied gases. Comm. Pure and Appl. Math. Ii, 331407.CrossRefGoogle Scholar
Klar, A., Dubroca, B. Frank, M., &Thoemmes, G. (2003). A half space moment approximation to the radiative heat transfer equations. Z. Angew. Math. Mech. 83, 16.Google Scholar
Klar, A. & Dubroca, B. (2002). A half moment model to take into account strong kinetic non-equilibrium. C.R. Acad. Sci., Série 1 335, 16.Google Scholar
Levermore, D. (1996). Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 10211065.CrossRefGoogle Scholar
Mihalas, D. & Mihalas, B.W. (1984). Foundations of radiation hydrodynamics. New York: Oxford University Press.
Muller, I. & Ruggeri, T. (1993). SprinTracts on Natural Philosophy, Vol. 37. New York: Springer-Verlag.
Pomraning, G.C. (1992). The Equations Of Radiation Thermodynamics. New York: Pergamon Press.
Struchtrup, H. (1997). Extended moment method in radiative transfer. Annals of Physics 257, 111135.CrossRefGoogle Scholar
Turpault, R. (2002). Multigroup half space moment approximations. C.R. Acad. Sci., Série 1 334, 331.Google Scholar