Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T01:07:46.673Z Has data issue: false hasContentIssue false

Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses

Published online by Cambridge University Press:  07 June 2005

Y. GLINEC
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR, Palaiseau, France
J. FAURE
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR, Palaiseau, France
A. PUKHOV
Affiliation:
Institut fur Theoretische Physik, Heinrich-Heine-Universitat Duesseldorf, Duesseldorf, Germany
S. KISELEV
Affiliation:
Institut fur Theoretische Physik, Heinrich-Heine-Universitat Duesseldorf, Duesseldorf, Germany
S. GORDIENKO
Affiliation:
Institut fur Theoretische Physik, Heinrich-Heine-Universitat Duesseldorf, Duesseldorf, Germany
B. MERCIER
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR, Palaiseau, France
V. MALKA
Affiliation:
Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR, Palaiseau, France

Abstract

Plasma-based accelerators have been proposed for the next generation of compact accelerators because of the huge electric fields they can support. However, it has been difficult to use them efficiently for applications because they produce poor quality particle beams with large energy spreads. Here, we demonstrate a dramatic enhancement in the quality of electron beams produced in laser-plasma interaction: an ultrashort laser pulse drives a plasma bubble which traps and accelerates plasma electrons to a single energy. This produces an extremely collimated and quasi-monoenergetic electron beam with a high charge of 0.5 nanocoulomb at energy 170 ± 20 MeV.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Alesini, D., Bertolucci, S., Biagini, M.E., Boni, R., Boscolo, M., Castellano, M., Clozza, A., DiPirro, G., Drago, A., Esposito, A.,et al. (2004). The SPARC/X SASE-FEL Projects. Laser Part. Beams 22, 341350.CrossRefGoogle Scholar
Amiranoff, F., Laberge, M., Marquès, J.-R., Moulin, F., Fabre, E., Cros, B., Matthieussent, G., Benkheiri, P., Jacquet, F., Meyer, J., Miné, P., Stenz, C. & Mora, P. (1992). Observation of modulational instability in Nd-laser beat-wave experiments. Phys. Rev. Lett. 68, 37103713.CrossRefGoogle Scholar
Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Pogosova, A.A. & Ramazashvili, R.R. (1992). Resonant excitation of wakefields by a laser pulse in a plasma. JETP Lett. 55, 571574.Google Scholar
Antonsen, T.M. & Mora, P. (1992). Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 22042207.CrossRefGoogle Scholar
Clayton, C.E., Joshi, C., Darrow, C. & Umstadter, D. (1985). Relativistic plasma-wave excitation by collinear optical mixing. Phys. Rev. Lett. 54, 23432346.CrossRefGoogle Scholar
Dorchiès, F., Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Jacquet, F., Malka, V., Marquès, J.-R., Matthieussent, G., Miné, Ph., Modena, A., Mora, P., Morillo, J., Najmudin, Z. & Solodov, A. (1999). Electron acceleration in laser wakefield experiments at Ecole Polytechnique. Laser Part. Beams 17, 299305.Google Scholar
Esarey, E., Hubbard, R.F., Leemans, W.P., Ting, A. & Sprangle, P. (1997). Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 26822685.CrossRefGoogle Scholar
Everett, M., Lal, A., Gordon, D., Clayton, C.E., Marsh, K.A. & Joshi, C. (1994). Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368, 527529.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 535538.Google Scholar
Fritzler, S., Lefebvre, E., Malka, V., Burgy, F., Dangor, A.E., Krushelnick, K., Mangles, S.P.D., Najmudin, Z., Rousseau, J.-P. & Walton, B. (2004). Emittance measurements of a laser-wakefield-accelerated electron beam. Phys. Rev. Lett. 92, 165006.CrossRefGoogle Scholar
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 47724775.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, Weyrich, K., &Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H. & Nakai, S. (1992). Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 4851.CrossRefGoogle Scholar
Malka, V. (2002). Charged particle source produced by laser–plasma interaction in the relativistic regime. Laser Part. Beams 20, 217221.Google Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.CrossRefGoogle Scholar
Malka, V., Faure, J., Marquès, J.-R., Amiranoff, F., Rousseau, J.-P., Ranc, S., Chambaret, J.-P., Najmudin, Z. & Solodov, A. (2001). Characterization of electron beams produced by ultrashort (30 fs) laser pulses. Phys. Plasmas 8, 26052608.CrossRefGoogle Scholar
Modena, A., Dangor, A., Najmudin, Z., Clayton, C., Marsh, K., Joshi, C., Malka, V., Darrow, C., Neely, D. & Walsh, F. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nature 337, 606608.CrossRefGoogle Scholar
Moore, C.I., Ting, A., Krushelnick, K., Esarey, E., Hubbard, R.F., Hafizi, B., Burris, H.R., Manka, C. & Sprangle, P. (1997). Electron trapping in self-modulated laser wakefields by Raman backscatter. Phys. Rev. Lett. 79, 39093912.CrossRefGoogle Scholar
Nakajima, K. (2000). Particle acceleration by ultraintense laser interactions with beams and plasmas. Laser Part. Beams 18, 519528.CrossRefGoogle Scholar
Pittman, M., Ferré, S., Rousseau, J.-P., Notebaert, L., Chambaret, J.-P. & Chériaux, G. (2002). Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system. Appl. Phys. B 74, 529535.CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (2002). Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.CrossRefGoogle Scholar
Pukhov, A. (1999). Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61, 425433.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.-M. & Meyer-ter-Vehn, J. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.CrossRefGoogle Scholar
Shorokov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22, 175.CrossRefGoogle Scholar
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. (1992). Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 22002203.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Comm. 56, 219221.CrossRefGoogle Scholar
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, N., Gryaznov,V.,Hoffmann, D.H.H., Hülsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS100 and optimization of spot size and pulse length. Laser Part Beams 22, 485493.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Umstadter, D., Chen, S.-Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996a). Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons. Science 273, 472475.Google Scholar
Umstadter, D., Kim, J.-K. & Dodd, E. (1996b). Laser injection of ultrashort electron pulses into wakefield waves. Phys. Rev. Lett. 76, 20732076.Google Scholar
Weber, S., Riazuelo, G., Michel, P., Loubere, R., Walraet, F., Tikhonchuk, V.T., Malka, V., Ovadia, J. & Bonnaud, G. (2004). Modeling of laser-plasma interaction on hydrodynamic scales: Physics development and comparison with experiments. Laser Part. Beams 22, 189195.CrossRefGoogle Scholar