Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T23:06:17.577Z Has data issue: false hasContentIssue false

Generation of proton beams from two-species targets irradiated by a femtosecond laser pulse of ultra-relativistic intensity

Published online by Cambridge University Press:  23 March 2017

J. Domański*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
J. Badziak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
S. Jabłoński
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
*
Address correspondence and reprint requests to: J. Domański, Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland. E-mail: [email protected]

Abstract

The paper presents results of two-dimensional particle-in-cell simulations of ion beam acceleration at the interactions of a 130-fs laser pulse of intensity in the range 1021–1023 W/cm2, predicted for the Extreme Light Infrastructure lasers, with thin hydrocarbon (CH) or erbium hydride (ErH3) targets. A special attention is paid to the effect of the laser pulse intensity and polarization (linear, circular) on the proton energy spectrum, the proton beam spatial distribution and the proton pulse shape and intensity. It is shown that for the low laser intensities (~1021 W/cm2) considerably higher proton beam parameters (proton energies, beam intensities) are achieved for the ErH3 target for both polarizations and the effect of polarization on the beam parameters is significant (higher parameters are achieved for the linear polarization). However, for the highest, ultra-relativistic intensities (~1023 W/cm2) higher proton beam parameters are attained for the CH target and the effect of polarization on these parameters is relatively low. In this case, for both polarizations quasi-monoenergetic proton beams are generated from the CH target of the mean proton energy ~2 GeV and $dE_{\rm p} /\bar E_{\rm p} \approx 0.3$ for the linear polarization and $dE_{\rm p} /\bar E_{\rm p} \approx 0.2$ for the circular one. At the highest laser intensities also the proton pulse peak intensities are higher for the CH target and for both polarizations they reach values well above 1021 W/cm2. In the paper, the properties of proton beam generation indicated above are discussed in detail and a physical explanation of the observed effects is done.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev. 15, 1.Google Scholar
Badziak, J., Antici, P., Fuchs, J., Jabłoński, S., Mancic, A., Parys, P., Rosiński, M., Suchańska, R., Szydłowski, A. & Wołowski, J. (2008 b). Laser-induced generation of ultraintense proton beams for high energy-density science. AIP Conf. Proc. 1024, 6377.Google Scholar
Badziak, J., Borodziuk, S., Pisarczyk, T., Chodukowski, T., Krousky, E., Masek, J., Skala, J., Ullschmied, J. & Rhee, Y.-J. (2010). Highly efficient acceleration and collimation of high- density plasma using laser-induced cavity pressure. Appl. Phys. Lett. 96, 251502.Google Scholar
Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J. & Mancic, A. (2008 a). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 104, 063310.Google Scholar
Badziak, J., Jabłoński, S., Pisarczyk, T., Rączka, P., Krousky, E., Liska, R., Kucharik, M., Chodukowski, T., Kalinowska, Z., Parys, P., Rosiński, M., Borodziuk, S. & Ullschmied, J. (2012). Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas 19, 053105.Google Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Zh., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240.Google Scholar
Danson, C., Hillier, D., Hopps, N. & Neely, D. (2015). Petawatt class lasers worldwide. High Power Laser Sci. Eng. 3, e3.Google Scholar
Denavit, J. (1992). Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052.Google Scholar
Domański, J., Badziak, J. & Jabłoński, S. (2016 a). Numerical studies of petawatt laser-driven proton generation from two-species targets using a two-dimensional particle-in-cell code. J. Instrum. 11, C04009.Google Scholar
Domański, J., Badziak, J. & Jabłoński, S. (2016 b). Enhanced efficiency of femtosecond laser-driven proton generation from a two-species target with heavy atoms. Laser Part. Beams 34, 294298.Google Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.Google Scholar
Fernandez, J.C., Albright, B.J., Beg, F.N., Foord, M.E., Hegelich, B.M., Honrubia, J.J., Roth, M., Stephens, R.B. & Yin, L. (2014). Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 54, 054006.Google Scholar
Foord, M.E., Mackinnon, A.J., Patel, P.K., MacPhee, A.G., Ping, Y., Tabak, M. & Town, R.P.J. (2008). Enhanced proton production from hydride-coated foils. J. Appl. Phys. 103, 056106.Google Scholar
Ledingham, K.W.D. & Galster, W. (2010). Laser-driven particle and photon beams and some applications. New J. Phys. 12, 045005.Google Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Control. Fusion 50, 124033.Google Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornalti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.Google Scholar
Patel, P.K., MacKinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton. Phys. Rev. Lett. 91, 125004.Google Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foil with circular polarized laser pulse. New J. Phys. 10, 013021.Google Scholar
Sgattoni, A., Sinigardi, S. & Macchi, A. (2014). High energy gain in three-dimensional simulations of light sail acceleration. Appl. Phys. Lett. 105, 084105.Google Scholar
Silva, L.O., Marti, M., Davies, J.R. & Fonseca, R.A. (2004). Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett. 92, 015002.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M., Browers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner. Laser Part. Beams, 24, 291298. doi: 10.1017/S0263034606060459.Google Scholar