Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T04:06:48.352Z Has data issue: false hasContentIssue false

Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases

Published online by Cambridge University Press:  06 August 2013

Zhandong Chen
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
Qiang Wu*
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
Ming Yang
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
Baiquan Tang
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
Jianghong Yao
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
Romano A. Rupp
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China Faculty of Physics, Vienna University, Wien, European Union
Yaan Cao
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
Jingjun Xu
Affiliation:
The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
*
Address correspondence and reprint requests to: Qiang Wu, The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457, China. E-mail: [email protected]

Abstract

Generation and evolution of plasma during femtosecond laser ablation of silicon are studied by steady-state and time-resolved spectroscopy in air, N2, SF6, and under vacuum. The plasma is generated faster than 200 ps (time resolution of our experiment) after excitation and mainly contains atoms and monovalent ions of silicon. Time-resolved spectra prove that silicon ions are faster than the silicon atoms which may be attributed to Coulomb repulsion and a local electric field when they are ejected from the silicon surface. During plasma evolution, ambient gas causes a confinement effect that enhances the dissociation of ambient gas molecules and the re-deposition of the removed material and leads to higher intensity and longer lifetime of the emission spectra. In SF6, a chemical reaction increases the plasma density and weakens the re-deposition effect. The different processes during plasma evolution strongly influence microstructure formation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amoruso, S., Ausanio, G., Bruzzese, R., Vitiello, M. & Wang, X. (2005). Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum. Phys. Rev. B 71, 033406.CrossRefGoogle Scholar
Amoruso, S., Bruzzese, R., Pagano, C. & Wang, X. (2007). Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum. Appl. Phys. A 89, 10171024.CrossRefGoogle Scholar
Amoruso, S., Bruzzese, R., Wang, X. & Xia, J. (2008). Propagation of a femtosecond pulsed laser ablation plume into a background atmosphere. Appl. Phys. Lett. 92, 041503.CrossRefGoogle Scholar
Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M., Wang, X., Ausanio, G., Iannotti, V. & Lanotte, L. (2004 a). Generation of silicon nanoparticles via femtosecond laser ablation in vacuum. Appl. Phys. Lett. 84, 45024504.CrossRefGoogle Scholar
Amoruso, S., Toftmann, B., Schou, J., Velotta, R. & Wang, X. (2004 b). Diagnostics of laser ablated plasma plumes. Thin Solid Films 453, 562572.CrossRefGoogle Scholar
Beilis, I.I. (2012). Modeling of the plasma produced by moderate energy laser beam interaction with metallic targets: Physics of the phenomena. Laser Part. Beams 30, 341356.CrossRefGoogle Scholar
Bonse, J., Baudach, S., Krüger, J., Kautek, W. & Lenzner, M. (2002). Femtosecond laser ablation of silicon-modification thresholds and morphology. Appl. Phys. A 74, 1925.CrossRefGoogle Scholar
Carey, J.E., Crouch, C.H., Shen, M. & Mazur, E. (2005). Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt. Lett. 30, 17731775.CrossRefGoogle ScholarPubMed
Chichkov, B.N., Momma, C., Nolte, S., Von Alvensleben, F. & Tünnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109115.CrossRefGoogle Scholar
Chuang, T.J. (1981). Multiple photon excited SF6 interaction with silicon surfaces. J. Chem. Phys. 74, 14531460.CrossRefGoogle Scholar
Colombier, J.P., Combis, P., Audouard, E. & Stoian, R. (2012). Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approach on aluminum. New J. Phys. 14, 013039.CrossRefGoogle Scholar
Dumitrica, T. & Allen, R.E. (2002). Nonthermal transition of GaAs in ultra-intense laser radiation field. Laser Part. Beams 20, 237242.CrossRefGoogle Scholar
Gattass, R.R. & Mazur, E. (2008). Femtosecond laser micromachining in transparent materials. Nature Photon. 2, 219225.CrossRefGoogle Scholar
Harilal, S.S., Bindhu, C.V., Tillack, M.S., Najmabadi, F. & Gaeris, A.C. (2003). Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J. Appl. Phys. 93, 23802388.CrossRefGoogle Scholar
Hebeisen, C.T., Sciaini, G., Harb, M., Ernstorfer, R., Kruglik, S.G. & Miller, R.J.D. (2008). Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface. Phys. Rev. B 78, 081403.CrossRefGoogle Scholar
Her, T.H., Finlay, R.J., Wu, C., Deliwala, S. & Mazur, E. (1998). Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 16731675.CrossRefGoogle Scholar
Huang, M., Zhao, F., Cheng, Y., Xu, N. & Xu, Z. (2009). Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond. Phys. Rev. B 79, 125436.CrossRefGoogle Scholar
Li, X., Feng, D.H., Jia, T.Q., He, H.Y., Xiong, P.X., Hou, S.S., Zhou, K., Sun, Z.R. & Xu, Z.Z. (2010). Fabrication of a two-dimensional periodic microflower array by three interfered femtosecond laser pulses on Al:ZnO thin films. New J. Phys. 12, 043025.CrossRefGoogle Scholar
Liu, S., Zhu, J., Liu, Y. & Zhao, L. (2008). Laser induced plasma in the formation of surface-microstructured silicon. Mater. Lett. 62, 38813883.CrossRefGoogle Scholar
Lorazo, P., Lewis, L.J. & Meunier, M. (2003). Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett. 91, 225502.CrossRefGoogle ScholarPubMed
McDonald, J.P., Mistry, V.R., Ray, K.E. & Yalisove, S.M. (2006). Femtosecond pulsed laser direct write production of nano- and microfluidic channels. Appl. Phys. Lett. 88, 183113.CrossRefGoogle Scholar
Nedanovska, E., Nersisyan, G., Lewis, C.L.S. & Riley, D. (2012). Investigation of magnesium laser ablated plumes with Thomson scattering. Laser Part. Beams 30, 259266.CrossRefGoogle Scholar
Perez, D. & Lewis, L.J. (2002). Ablation of solids under femtosecond laser pulses. Phys. Rev. Lett. 89, 255504.CrossRefGoogle ScholarPubMed
Reinhardt, C., Passinger, S., Zorba, V., Chichkov, B.N. & Fotakis, C. (2007). Replica molding of picosecond laser fabricated Si microstructures. Appl. Phys. A 87, 673677.CrossRefGoogle Scholar
Rosmej, F.B., Renner, O., Krousky, E., Wieser, J., Schollmeier, M., Krasa, J., Laska, L., Kralikova, B., Skala, J., Bodnar, M., Rosmej, O.N. & Hoffmann, D.H.H. (2002). Space-resolved analysis of highly charged radiating target ions generated by kilojoule laser beams. Laser Part. Beams 20, 555557.CrossRefGoogle Scholar
Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., Von der Linde, D., Oparin, A., Meyer-ter-Vehn, J. & Anisimov, S.I. (1998). Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224227.CrossRefGoogle Scholar
Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I.V., Bulgakova, N.M. & Campbell, E.E.B. (2002). Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys. Rev. Lett. 88, 097603.CrossRefGoogle ScholarPubMed
Von der Linde, D., Sokolowski-Tinten, K. & Bialkowski, J. (1997). Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci. 109, 110.CrossRefGoogle Scholar
Wendelen, W., Mueller, B.Y., Autrique, D., Rethfeld, B. & Bogaerts, A. (2012). Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions. J. Appl. Phys. 111, 113110.CrossRefGoogle Scholar
Wu, C., Crouch, C.H., Zhao, L. & Mazur, E. (2002). Visible luminescence from silicon surfaces microstructured in air. Appl. Phys. Lett. 81, 19992001.CrossRefGoogle Scholar
Wu, Z., Zhang, N., Wang, M. & Zhu, X. (2011). Femtosecond laser ablation of silicon in air and vacuum. Chin. Opt. Lett. 9, 093201.Google Scholar
Ying, M., Xia, Y., Sun, Y., Zhao, M., Ma, Y., Liu, X., Li, Y. & Hou, X. (2003). Plasma properties of a laser-ablated aluminum target in air. Laser Part. Beams 21, 97101.CrossRefGoogle Scholar
Younkin, R., Carey, J.E., Mazur, E., Levinson, J.A. & Friend, C.M. (2003). Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J. Appl. Phys. 93, 26262629.CrossRefGoogle Scholar
Zhang, N., Zhu, X., Yang, J., Wang, X. & Wang, M. (2007). Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys. Rev. Lett. 99, 167602.CrossRefGoogle ScholarPubMed