Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T21:16:17.695Z Has data issue: false hasContentIssue false

Gamma-ray source through inverse Compton scattering in a thermal hohlraum

Published online by Cambridge University Press:  28 August 2013

Y.L. Ping*
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, Peoples Republic of China National Astronomical Observatories, Chinese Academy of Sciences, Beijing, Peoples Republic of China
X.T. He
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, Peoples Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, Peoples Republic of China
H. Zhang
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, Peoples Republic of China
B. Qiao
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, Peoples Republic of China Center for Energy Research, University of California San Diego, La Jolla, California
H.B. Cai
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, Peoples Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, Peoples Republic of China
S.Y. Chen
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, Peoples Republic of China
*
Address correspondence and reprint requests to: Y.L. Ping, Center for Applied Physics and Technology, Peking University, Beijing 100084, P.R. China. E-mail: [email protected]

Abstract

A new inverse Compton scattering scheme for production of high-energy Gamma-ray sources is proposed in which a Giga-electronvolt (GeV) electron beam is injected into a thermal hohlraum. It is found that by increasing the hohlraum background temperature, the scattered photons experience kinematic pileup, resulting in more monochromatic spectrum and smaller scattering angle. When a relativistic electron beam with energy 1 GeV and charge 10nC is injected into a 0.5 keV hohlraum, 80% of the scattered photons have energy above 0.5 GeV.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bini, C.De Zorzi, G.Diambrini-Palazzi, G.Di Cosimo, G.Di Domenico, A.Gauzzi, P.Zanello, D. (1991). Scattering of thermal photons by a 46 GeV positron beam at LEP. Phys. Lett. B. 262, 135138.CrossRefGoogle Scholar
Blumenthal, G.R. & Gould, R.J. (1970). Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237270.CrossRefGoogle Scholar
Bœhm, C.Lavalle, J. (2009). Clarifying the covariant formalism for the Sunyaev-Zel'dovich effect due to relativistic nonthermal electrons. Phys.Rev.D. 79, 083505.CrossRefGoogle Scholar
Chyla, W.T. (2006). On generation of collimated high-power gamma beams. Laser Part. Beams 24, 143156.CrossRefGoogle Scholar
Compton, A. (1923). A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 483502.CrossRefGoogle Scholar
Dehning, B.Melissinos, A.C.Perrone, F.Rizzo, C.Von Holtey, G. (1990). Scattering of high energy electrons off thermal photons. Phys. Lett. B. 249, 145148.CrossRefGoogle Scholar
Di Domenico, A. (1992). Inverse Compton scattering of thermal radiation at LEP and LEP-200. Part. Accel. 39, 137146.Google Scholar
Fargion, D. (1994). The Dark Side of the Universe (Bernabei, R. and Tao, C., Eds), Singapore, New Jersey: World Scientific Publishing Co Pte Ltd.Google Scholar
Fargion, D.Salis, A. (1998). Inverse Compton scattering off black body radiation in high energy physics and gamma (MeV ± TeV) astrophysics. Physics-Uspekhi. 41, 823829. Arxiv:astro-ph/9605168.CrossRefGoogle Scholar
Feenberg, E.Primakoff, H. (1948). Interaction of cosmic-ray primaries with sunlight and starlight. Phys. Rev. 73, 449469.CrossRefGoogle Scholar
Gibson, D.J.Anderson, S.G.Barty, C.P.J.Betts, S.M.Booth, R.Brown, W.J.Crane, J.K.Cross, R.R.Fittinghoff, D.N.Hartemann, F.V.Kuba, J.Le Sage, G.P.Slaughter, D.R.Tremaine, A.M.Wootton, A.J.Hartouni, E.P.Springer, P.T.Rosenzweig, J.B. (2004). PLEIADES: A picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies. Phys. Plasmas 11, 28572864.CrossRefGoogle Scholar
Hartemann, F.V.Baldis, H.A.Kerman, A.K.Foll, A., Le. Luhmann, N.C.Rupp, B. (2001). Three-dimensional theory of emittance in Compton scattering and x-ray protein crystallography. Phys. Rev. E. 64, 016501.CrossRefGoogle ScholarPubMed
Hartemann, F.V.Tremaine, A.M.Anderson, S.G.Barty, C.P.J.Betts, S.M.Booth, R.Brown, W.J.Crane, J.K.Cross, R.R.Gibson, D.J.Fittinghoff, D.N.Kuba, J.Le Sage, G.P.Slaughter, D.R.Wootton, A.J.Hartouni, E.P.Springer, P.T.Rosenzweig, J.B.Kerman, A.K. (2004). Characterization of a bright, tunable, ultrafast Compton scattering X-ray source. Laser Part. Beams 22, 221244.CrossRefGoogle Scholar
Hartemann, F.V.Brown, W.J.Gibson, D.J.Anderson, S.G.Tremaine, A.M.Springer, P.T.Wootton, A.J.Hartouni, E.P.Barty, C.P.J. (2005). High-energy scaling of Compton scattering light sources. Phys. Rev. ST Accel. Beams 8, 100702.CrossRefGoogle Scholar
Hartemann, F.V.Siders, C.W.Barty, C.P.J. (2008). Compton scattering in ignited thermonuclear plasmas. Phys. Rev. Lett. 100, 125001; Theory of Compton scattering in ignited thermonuclear plasmas. J. Opt. Soc. Am. B. 25, B167–B174.CrossRefGoogle ScholarPubMed
John, R.W. (1998). Brilliance of X rays and gamma rays produced by Compton backscattering of laser light from high-energy electrons. Laser Part. Beams 16, 115127.CrossRefGoogle Scholar
Jones, F.C. (1968). Calculated spectrum of inverse-Compton-scattered photons. Phys. Rev. 167, 11591169.CrossRefGoogle Scholar
Kauffman, R.L.Suter, L.J.Darrow, C.B.Kilkenny, J.D.Kornblum, H.N.Montgomery, D.S.Phillion, D.W.Rosen, M.D.Theissen, A.R.Wallace, R.J.Ze, F. (1994). High temperatures in inertial confinement fusion radiation cavities heated with 0.35 µm light. Phys. Rev. Lett. 73, 23202323.CrossRefGoogle Scholar
Klemz, G.Mönig, K.Will, I. (2006). Design study of an optical cavity for a future photon collider at ILC. Nucl. Instr. and Meth. A 564, 212224.CrossRefGoogle Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Lindl, J.D.Amendt, P.Berger, R.L.Glendinning, S.G.Glenzer, S.H.Haan, S.W.Kauffman, R.L.Landen, O.L.Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Longair, M.S. (1981). High Energy Astrophysics. New York: Cambridge University Press.Google Scholar
Priebe, G.Laundy, D.MacDonald, M.A.Diakun, G.P.Jones, L.B.Holder, D.J.Smith, S.L.Fell, B.D.Seddon, E.A.Chattopadhyay, S.Jamison, S.P.Phillips, P.J.Hirst, G.J.Collier, J.Schramm, U.Grüner, F.Sheehy, B.Naumova, N.Ter-Avetisyan, S.Sokolov, I.V.Spohr, K.Krafft, G.A.Rosenzweig, J.B. (2008). Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury. Laser Part. Beams 26, 649660.CrossRefGoogle Scholar
Suter, L.J.Kauffman, R.L.Darrow, C.B.Hauer, A.A.Kornblum, H.Lander, O.L.Orzechowski, T.J.Phillion, D.W.Porter, J.L.Powers, L.V.Richard, A.Rosen, M.D.Thiessen, A.R.Wallace, R. (1996). Radiation drive in laser-heated hohlraums. Phys. Plasmas. 3, 20572062.CrossRefGoogle Scholar
Zeldovich, Y.B.Sunyaev, R.A. (1969). The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 4, 301316.CrossRefGoogle Scholar