Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T19:49:32.516Z Has data issue: false hasContentIssue false

Fusion energy from plasma block ignition

Published online by Cambridge University Press:  05 December 2005

H. HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
J. BADZIAK
Affiliation:
Institute of Plasma Physics and laser Microfusion, Warsaw, Poland
S. GLOWACZ
Affiliation:
Institute of Plasma Physics and laser Microfusion, Warsaw, Poland School of Quantitative 0ethods and Mathematical Sciences, University of Western Sydney, Penrith, Australia
S. JABLONSKI
Affiliation:
Institute of Plasma Physics and laser Microfusion, Warsaw, Poland School of Quantitative 0ethods and Mathematical Sciences, University of Western Sydney, Penrith, Australia
Z. SKLADANOWSKI
Affiliation:
Institute of Plasma Physics and laser Microfusion, Warsaw, Poland
F. OSMAN
Affiliation:
School of Quantitative 0ethods and Mathematical Sciences, University of Western Sydney, Penrith, Australia
YU CANG
Affiliation:
School of Quantitative 0ethods and Mathematical Sciences, University of Western Sydney, Penrith, Australia Institute of Physics, Chinese Academy of Sciences, Beijing, China
JIE ZHANG
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing, China
G.H. MILEY
Affiliation:
Fusion Studies laboratory, University of Illinois, Urbana Illinois
HANSHENG PENG
Affiliation:
China Academy of Engineering Physics, Mianyang, China
XIANTU HE
Affiliation:
Institute of Applied Physics and Computation Mathematics, Beijing, China
WEIYAN ZHANG
Affiliation:
China Academy of Engineering Physics, Mianyang, China
K. ROHLENA
Affiliation:
Insitute of Physics, Academy of Science, Czech Republic, Prague, Czech Republic
J. ULLSCHMIED
Affiliation:
Insitute of Physics, Academy of Science, Czech Republic, Prague, Czech Republic
K. JUNGWIRTH
Affiliation:
Insitute of Physics, Academy of Science, Czech Republic, Prague, Czech Republic

Abstract

Generation of high speed dense plasma blocks is well known from hydrodynamic theory and computations (PIC) with experimental confirmation by Badziak et al. (2005) since ps laser pulses with power above TW are available. These blocks may be used for fusion flame generation (thermonuclear propagation) in uncompressed solid state deuterium and tritium for very high gain uncomplicated operation in power stations. Hydrodynamic theory from computations from the end of 1970s to recent, genuine two fluid computations support the skin layer accelerations (SLA), by nonlinear (ponderomotive) forces as measured now in details under the uniquely selected conditions to suppress relativistic self-focusing by high contrast ratio and to keep plane geometry interaction. It is shown how the now available PW-ps laser pulses may provide the very extreme conditions for generating the fusion flames in solid state density DT.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowskin, J., Hora, H., Kraska, J., Laska, J. & Rohlena, R. (2004a). Production of ultrahigh ion current densities at Skin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.Google Scholar
Badziak, J., Glovacz, S.G., Jablonski, S., Parya, P., Wolowski, J. & Hora, H. (2004b). Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.Google Scholar
Badziak, J., Hora, H., Woryna, S., Jablonski, S., Laska, L., Parys, P., Rohlena, K. & Wolowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser-plasma interaction. Phys. Lett. A 315, 452457.Google Scholar
Badziak, J., Kozlov, A.A., Makowski, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.Google Scholar
Bagge, F. & Hora, H. (1974). Calculation of the reduced penetration depth of relativistic electrons in plasmas for nuclear fusion. Atomkernenergie 24, 143144.Google Scholar
Bobin, J.L. (1971). Flame propagation and overdense heating in laser created plasma. Phys. Fluids 14, 23412356.Google Scholar
Bobin, J.L. (1974). Laser Interaction and Related Plasma Phenomena (Schwarz, E. & Hora, E., Eds.), Vol. 3B, pp. 465481. New York: Plenum.
Brueckner, K.A. & Jorna, S. (1974). Laser driven fusion. Rev. Mod. Phys. 46, 325367.Google Scholar
Campbell, E.M. (1992). The physics of megajoule, large-scale, and ultrafast short-scale laser plasmas. Phys. Fluids B4, 37813799.Google Scholar
Campbell, E.M., Baldwin, D. & Blue, N. (2000). Congratulation message for Professor Chiyoe Yamanaka, Light and Shade: Festschrift to the 77th Birthday of Chiyoe Yamanaka, (ILE, Osaka University) p. 470472.
Campbell, E.M., Holmes, N.C., Libby, B.S., Remington, B.A. & Teller, E. (1997). The evolution of high-energy-density physics: From nuclear testing to the super lasers. Laser Part. Beams 15, 607626.Google Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.Google Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.Google Scholar
Clark, F.L., Krushelnik, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2001). Energetic heavy ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.Google Scholar
Deutsch, C. (2004). Penetration of intense charge particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Ehler, A.W. (1975). High-energy ions from a CO2 laser-produced plasma. J. Appl. Phys. 46, 24642467.Google Scholar
Eliezer, S. & Hora, H. (1989). Double layers in laser-produced plasmas. Phys. Rep. 172, 339406.Google Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.Google Scholar
Fews, P.A., et al. (1994). Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets. Plasma Phys. Contr. Fusion 36, 18011804.Google Scholar
Gabor, D. (1953). Collective model for particle interaction in plasmas. Proc. Royal Soc. London A 213, 7392.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma by a short laser pulse. Laser Part. Beams, in press.
Grieger, G. & Wendelstein VII Team (1981). Measurements at the Wendelstein stellarator. In Plasma Physics and Controlled Nuclear Fusion Research 1980. Vol. I, p. 173–179 and p. 185–192. Vienna: IAEA.
Guenther, A.H. (1974). Report on Experiments at Kirtland Air force Base, New Mexico.
Hain, S. & Mulser, P. (2001). Fast ignition without hole boring. Phys. Rev. Lett. 86, 10151018.Google Scholar
Haseroth, H. & Hora, H. (1996). Physical problems of the ion generation in laser driven ion sources, laser and particle beams. Laser Part. Beams 14, 395438.Google Scholar
Häuser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted in plasma by relativistic self-focusing of laser beams. Physical Rev. A 45, 12781281.Google Scholar
Hora, H. (1969). Nonlinear confining and deconfining forces associated with the interaction of laser radiation with plasma. Phys. Fluids 12, 182191.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Amer. 65, 882886.Google Scholar
Hora, H. (1981). Quantum properties of collisions in plasmas at high temperatures. Nuovo Cimento 64B, 18.Google Scholar
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion driven by nonlinear laser forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1986). The transient electrodynamic forces at laser-plasma Interaction. Phys. Fluids 28, 3706.Google Scholar
Hora, H. (1987). Encyclopaedia of Physical Science and Technology. Vol. 7, p. 99. San Diego: Academic Press.
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H. (2003a). Fusion reactor with petawatt laser (in German) German Patent Application 1033 08 515.3 (28.2.2002, declassified, 5. Sept. 2002) Published Oct. 11.
Hora, H. (2003b). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czech. J. Phys. 53, 199217.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 411451.Google Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, K., Yamanaka, M. & Yamanaka, C. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, K. & Rohlena, J. (2002a). Effects of ps and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.Google Scholar
Hora, H., Osman, F., Höpfl, R., Badziak, J., Parys, P., Wolowski, J., Skala, J., Ullschmied, J., Wolowski, J., Woryna, E., Woryna, W., Boody, F., Jungwirth, K., Kralikow, A.B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2002b). Skin depth theory explaining anomalous picosecond laser plasma interaction. Czech J. Phys. 52, D349D361.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Pfeifer, M., Skala, J. & Ullschmied, J. (2003). Skin depth theory for nonlinear-force driven block ignition laser-ICF based on anomalous picosecond terawatt laser plasma interaction. SPIE Proc. 5228, 295305.Google Scholar
Hora, H., Cang, Yu., He, Xiantu, Zhang, Jie, Osman, F., Badziak, J., Boody, F.P., Gammino, S., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L, Liu, Hong, Miley, G.H, Parys, P., Peng, Hansheng, Pfeiffer, M., Rohlane, K., Skala, J., Skladanowski, L., Torrisi, L., Ullschmied, J., Wolowski, J. & Zhang, W. (2004). Generation of nonlinear force driven blocks from skin layer interaction of petawatt-picosecond laser pulses for ICF. Plasma Sci. Technol. 6, 21722187.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction. Phys. Rev. Lett. 53, 16501652.Google Scholar
Hora, H. & Miley, G.H. (2005). Edward Teller Lectures: Laser and Inertial Fusion Energy. London: Imperial College Press.
Hora, H. & Wang, L. (2001). Comments on measurements by J. Zhang et al. Summit on Plasma Physics, Febr., Islamabad.
Jabłonski, S., Hora, H., Głowacz, S., Badziak, J., Cang, Yu. & Osman, F. (2005). Two-fluid computations of plasma block dynamics for numerical analyze of rippling effect. Laser Part. Beams 23, 433439.Google Scholar
Jones, D.A., Kane, E.L., Lalousis, P., Wiles, P.R. & Hora, H. (1982). Density modification and energetic ion production at relativistic self-focusing of laser beams in plasmas. Phys. Fluids 25, 22952302.Google Scholar
Kerns, J.R., Rogers, C.W. & Clark, J.G. (1972). Mega-ampere electron beam penetration in CD2. Bull. Am. Phys. Soc. 17, 692.Google Scholar
Klimo, O. & Limpouch, J. (2006). Particle simulation of acceleration of quasineutral plasma blocks by short laser pulses. Laser Part. Beams, in press.
Kodama & Fast Ignitor Consortium (2002). Fast heating scalable to laser fusion ignition. Nature 418, 933943.Google Scholar
Ledingham, K.W.D., Spencer, I., Mccanny, T., Singhal, R.P., Santala, M.I.K., Clark, E., Watts, I., Beg, F.N., Zepf, M., Krushelnik, K., Tatarakis, M., Dangor, A.E., Norreys, P.A., Allott, R., Neely, D., Clark, R.J., Machacek, A.C., Wark, J.S., Cresswell, A.J., Sanderson, D.C.W. & Magill, J. (2000). Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84, 899902.Google Scholar
Leemans, W.P., Rodgers, D., Catravas, P.E., Geddes, C.G.R., Fubiani, G., Esarey, E., Shadwick, B.A., Donahue, R. & Smith, A. (2001). Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 25102516.Google Scholar
Leon, P.T., Eliezer, S., Martinez-Val, J.M. & Piera, M. (2001). Fusion burning waves in degenerate plasmas. Phys. Lett. A289, 135140.Google Scholar
Li, X.Z., Liu, B., Chen, S., Wei, Q.M. & Hora, H. (2004). Fusion cross-sections for inertial fusion energy. Laser Part. Beams 22, 469.Google Scholar
Marshak, R.E. (1941). Wave mechanical scattering at particle collisions. Ann. N.Y. Acad. Sci. 41, 4967.Google Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns-MJ laser pulses. Laser Part. Beams 23, 453460.Google Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Science and Applications 2001. (Tanaka, V.R., Meyerhofer, D.D. & Meyer-ter-Vehn, J., Eds.), pp. 831839. Paris: Elsevier.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems and perspectives. Laser Part. Beams 22, 512Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157.Google Scholar
Nuckolls, J.L. & Wood, L. (2002). LLNL Preprint. UCRL-JC-149860.
Osman, F., Castillo, R. & Hora, H. (1999). Relativistic self-focusing. J. Plasma Phys. 61 263273.Google Scholar
Perry, M.V. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 264, 917924.Google Scholar
Ray, P.S. & Hora, H. (1977). On the thermalization of energetic charged particles in fusion plasma with quantum electrodynamic considerations. Zeitschrift f. Naturforschung 31, 538543.Google Scholar
Razumova, K.A. (1983). Results from T-7, T-10, T-11, and TM-4 tokamaks. Plasma Phys. 26, 3747.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brwon, C., Fountain, W., Johnson, J., Pennington, D.W., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M..D. & Powell, H. (2001). Fast ignition by intense laser accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Roth, M., Brambrink, E., Audebert, R., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Hoffmann, D.H.H., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter inveraction. Laser Part. Beams 23, 95100.Google Scholar
Ryutov, D.D., Derzon, M.S. & Matzen, M.K. (2000). The physics of fast Z pinches. Rev. Mod. Phys. 72, 167223.Google Scholar
Sauerbrey, R. (1996). Acceleration in femtosecond laser produced plasmas. Phys. Plasma 3, 47124716.Google Scholar
Schäfer, F.P. (1986). Appl. Phys. B39, 1.
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503511.Google Scholar
Schwoerer, H., Gibbon, P., Duesterer, S., Behrens, K., Ziener, C., Reich, C. & Sauerbrey, R. (2001). MeV X rays and photoneutrons from femtosecond laser-produced plasmas. Phys. Rev. Lett. 86, 23172320.Google Scholar
Stepanek, J. (1981). Laser Interaction and Related Plasma Phenomena. Schwarz, H. & Hora, E. (Eds.), Vol. 5, p. 341. New York: Plenum.
Tabak, M., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Teubner, U., Bergmann, B., Van Wontergehm, B., Schäfer, F.P. & Sauerbrey, R. (1993). Angle dependent x-ray emission and resonance-absorption in a laser produced plasma generated by a high-intensity ultrashort pulse. Phys. Rev. Lett. 70, 794797.Google Scholar
Umstadter, R. (1996). Terawatt lasers produced fast electron acceleration. Laser Focus 32, 101107.Google Scholar
Wilks, S., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hackett, S.A., Ket, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542551.Google Scholar
Wolowski, J., Badziak, J., Boody, G.S., Hora, H., Jungwirth, K., Kaska, J., Laska, L., Parys, P., Pfeifer, M., Rohlena, K., Szydlowski, A., Torris, L., Ullschmied, J. & Woryna, E. (2003). Characteristics of ion emission from plasma produced by high-energy short-wavelength (438 nm) laser radiation. Plasma Phy. Contr. Fusion 45, 10871093.Google Scholar
Wu, Hui-Chun, Sheng, Z.M., Zhang, J., Cang, Y. & Zhang, J. (2005). Controlling ultrashort intense laser pulses by plasma Bragg gratings with ultrahigh damage threshold. Laser Part. Beams 23, 417421.Google Scholar
Yonas, G. (1978). Fusion power with particle beams. Scientific Am. 239, 4051.Google Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, Lang, Li, Z.L., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-Ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E57, 37463752.Google Scholar