Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T05:16:13.189Z Has data issue: false hasContentIssue false

A fundamental theory of high power thyratrons for high power laser and beam applications III: the production of radiation

Published online by Cambridge University Press:  09 March 2009

J. A. Kunc
Affiliation:
University of Southern California, Los Angeles, CA 90089-0484.
D. E. Shemansky
Affiliation:
University of Southern California, Los Angeles, CA 90089-0484.
M. A. Gundersen
Affiliation:
University of Southern California, Los Angeles, CA 90089-0484.

Abstract

The radiation characteristics of a high-current hydrogen thyratron plasma have been modeled in order to study this aspect of the physics of the conductive phase of thyratron operation. The intensities and radiative energy efficiencies of the atomic and molecular systems have been calculated in detail. A model is developed that is useful for studies of photoemission. For discharge parameters Te ≈ 1 eV, ionization fraction of ∼10−2 and background density of 1016 cm−3, the total power of the emitted radiation is estimated to be of the order of 5% of the total input power during the conductive phase.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajello, J. M., Shemansky, D. E., Kwok, L. & Young, Y. L. 1984 Phys. Rev. A29, 636.Google Scholar
Bates, D. R., Kingston, A. E. & McWhirter, . 1962a Proc. Roy. Soc. A267, 297.Google Scholar
Bates, D. R., Kingston, A. E. & McWhirter, . 1962b Proc. Roy. Soc. A270, 155.Google Scholar
Biaz, T. & Pham, D. W. 1972 J. Phys. B, 5, 198.Google Scholar
Brown, R. L. & Matthers, W. G. 1970 Astroph. J. 160, 939.Google Scholar
Cairns, R. B. & Sampson, J. A. R. 1966 J. Opt. Soc. Am. 56, 1568.Google Scholar
Erwin, D. A. & Kunc, J. A. 1983 IEEE Trans. Plasma Science, 11, 266.Google Scholar
Fowler, R. G. & Holzberlein, T. M. 1965 J. Chem. Phys. 42, 3723.Google Scholar
Fowler, R. G. & Holzberlein, T. M. 1966 J. Chem. Phys. 45, 1123.Google Scholar
Freis, R. P. & Hiskes, J. R. 1970 Phys. Rev. A, 2, 573.Google Scholar
Glass-Maujean, M., Dessler, K. & Quadrelli, L. 1983 Physics. Rev. A28, 2868.Google Scholar
Hearn, A. G. 1963 Proc. Phys. Soc. 81, 648.Google Scholar
Hearn, A. G. 1966 Proc. Phys. Soc. 88, 171.Google Scholar
Hiskes, J. R., 1982 Proc. of 35th Inter. Gas. Electr. Conf.,Dallas.Google Scholar
Hiskes, J. R., Kara, A. M., Bacal, M., Brunetau, A. M. & Graham, W. G. 1982 J. Appl. Phys. 53, 3469.Google Scholar
Holstein, T. 1951 Phys. Rev. 83, 1159.Google Scholar
Kogan, V. I. 1967 Proc. of 8th Inter. Conf. on Phenomenon in Ionized Gases,Vienna.Google Scholar
Kunc, J. A. & Gundersen, M. A. 1982 IEEE Trans, on Plasma Sci., Special Issue, 10, 315.Google Scholar
Kunc, J. A., Guha, S. & Gundersen, M. A. 1983 Laser and Particle Beams, 1, 395.Google Scholar
Kunc, J. A. & Gundersen, M. A. 1983a Laser and Particle Beams, 1, 407.Google Scholar
Kunc, J. A. & Gundersen, M. A. 1983b J. Appl Phys. 54, 2761.Google Scholar
McWhirter, R. W. P., Plasma Diagnostic Techniques, Academic Press, 1965.Google Scholar
Osterbrock, D. E., Astrophysics of Gaseous Nebulae, Freeman and Co., 1974.Google Scholar
Shemansky, D. E. & Ajello, J. M. 1983 J. Geophys. Res. 88, 459.Google Scholar
Shemansky, D. E. & Smith, G. R. 1984 submitted.Google Scholar
Suckewer, S. & Kuszell, A. 1975 J. Quant. Spectr. Rad. Transfer, 16, 53.Google Scholar