Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:56:45.537Z Has data issue: false hasContentIssue false

Fore-vacuum plasma-cathode electron sources

Published online by Cambridge University Press:  12 November 2008

V.A. Burdovitsin
Affiliation:
Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
E.M. Oks*
Affiliation:
Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
*
Address correspondence and reprint requests to: Efim Oks, Tomsk State University of Control Systems and Radio-electronics, 40 Lenin Ave., 634050 Tomsk, Russia. E-mail: [email protected]

Abstract

This paper presents a review of physical principles, design, and performances of plasma-cathode direct current (dc) electron beam guns operated in so called fore-vacuum pressure (1–15 Pa). That operation pressure range was not reached before for any kind of electron sources. A number of unique parameters of the e-beam were obtained, such as electron energy (up to 25 kV), dc beam current (up 0.5 A), and total beam power (up to 7 kW). For electron beam generation at these relatively high pressures, the following special features are important: high probability of electrical breakdown within the accelerating gap, a strong influence of back-streaming ions on both the emission electrode and the emitting plasma, generation of secondary plasma in the beam propagation region, and intense beam-plasma interactions that lead in turn to broadening of the beam energy spectrum and beam defocusing. Yet other unique peculiarities can occur for the case of ribbon electron beams, having to do with local maxima in the lateral beam current density distribution. The construction details of several plasma-cathode electron sources and some specific applications are also presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belyuk, S.I., Kreindel, Yu.E. & Rempe, N.G. (1980). Research of possibility of expansion of area of pressure of a plasma source электронов. Soviet Phys. Techn. Phys. 25, 124.Google Scholar
Bugaev, S.P., Kreindel, Yu.E. & Schanin, P.M. (1984). Large-Cross-Section Electron Beam (in Russian). Moscow: Energoatomizdat.Google Scholar
Bugaev, A.S., Vizir, A.V., Gushenets, V.I., Nikolaev, A.G., Oks, E.M., Yushkov, G.Yu., Burachevsky, Yu.A., Burdovitsin, V.A., Osipov, I.V. & Rempe, N.G. (2003). Current status of the plasma emission electronics. Laser Part. Beams 21, 139.CrossRefGoogle Scholar
Burachevskii, Y.A., Burdovitsin, V.A., Kuzemchenko, M.N., Mytniko, V.A.V. & Oks, E.M. (2001). Generation of electron beams in fore-vacuum pressure range. Russian Phys. J. 44, 996.CrossRefGoogle Scholar
Burachevsky, Yu.A., Burdovitsin, V.A., Mytnikov, A.V. & Oks, E.M. (2001). Limiting working pressure of a plasma electron source on the basis of hollow cathode discharge. Techn. Phys. 46, 179.CrossRefGoogle Scholar
Burachevsky, Y.A., Burdovitsin, V., Oks, E. & Fedorov, M. (2003). Film synthesis in a beam-plasma discharge driven by electron beam from the fore-pump plasma gun. Proc. 7th Int. Conf. on Electron Beam Technologies, p. 160. Bulgaria.Google Scholar
Burachevsky, Yu.A., Burdovitsin, V.A., Oks, E.M., Klimov, A.S. & Fedorov, M.V. (2006). Plasma localization in an extended hollow cathode of the plasma source of a ribbon electron beam. Techn. Phys. 51, 1316.CrossRefGoogle Scholar
Burdovitsin, V.A. & Oks, E.M. (1999). Hollow-cathode plasma electron gun for beam generation at fore-pump gas pressure. Rev. Sci. Instrum. 70, 2975.CrossRefGoogle Scholar
Burdovitsin, V.A., Kuzemchenko, M.N. & Oks, E.M. (2002). Electric strength of an accelerating gap of plasma electron source in fore-vacuum pressure range. Techn. Phys. 47, 926.CrossRefGoogle Scholar
Burdovitsin, V.A., Burachevskii, Yu.A., Oks, E.M. & Fedorov, M.V. (2003 a). A Plasma-cathode electron source for ribbon-beam generation at forevacuum pressures. Instr. Exper. Techn. 46, 257.CrossRefGoogle Scholar
Burdovitsin, V., Burachevsky, Yu., Oks, E. & Rabotkin, S. (2003 b). Initiation of plasma chemistry reaction with electron beam, produced by plasma electron gun. Proc. 16th Int. Symp. On Plasma ChemistryItaly.Google Scholar
Burdovitsin, V.A., Burachevsky, Yu.A., Oks, E.M. & Fedorov, M.V. (2004 a). Specific features of the formation of a uniform ribbon electron beam by a plasma source in the fore-vacuum pressure range. Techn. Phys. 49, 104.CrossRefGoogle Scholar
Burdovitsin, V.A., Oks, E.M. & Fedorov, M.V. (2004 b). Parameters of the plasma sheet generated by ribbon electronic beam in fore-vacuum pressure range. Russian Phys. J. 47, 310.CrossRefGoogle Scholar
Burdovitsin, V.A., Zhirkov, I.S., Oks, E.M. & Osipov, I.V. (2005). A plasma-cathode electron source for focused-beam generation in the fore-pump pressure range. Instr. Exper. Techn. 48, 761.CrossRefGoogle Scholar
Denbnovetsky, S.V., Melnyk, V.G. & Melnyk, I.V. (2003). High voltage glow discharge electron sources and possibilities of its technological application. IEEE Trans. Plasma. Sci. 31, 987.CrossRefGoogle Scholar
Dewald, E., Frank, K., Hoffmann, D.H.H., Ganciu, M., Mandache, N.B., Nistor, M., Pointu, A.M. & Popescu, I.I. (1998). Intense electron beams produced in pseudospark and PCOHC for beam-plasma interaction experiments. Nucl. Instr. Meth. Phys. Res. A 415, 614620.CrossRefGoogle Scholar
Frank, K., Bickes, C., Ernst, U., Iberler, M., Meier, J., Prucker, U., Schlaug, M., Schwab, J., Urban, J. & Hoffmann, D.H.H. (1998). Low-pressure pseudospark switches for ICF pulsed power. Nucl. Instr. Meth. Phys. Res. A 415, 327331.CrossRefGoogle Scholar
Frank, K., Dewald, E., Bickes, C., Ernst, U., Iberler, M., Meier, J., Prucker, U., Rainer, A., Schlaug, M., Schwab, J., Urban, J., Weisser, W. & Hoffmann, D.H.H. (1999). Scientific and technological progress of pseudospark devices. IEEE Trans. Plasma Sci. 27, 10081020.CrossRefGoogle Scholar
Galansky, V.L., Kreindel, Yu.E., Oks, E.M. & Ripp, A.G. (1987). Analysis of the emission properties of a plasma cathode. Soviet Phys. Techn. Phys. 32, 905.Google Scholar
Goebel, D.M. & Watkings, R.M. (2000). High current low pressure plasma cathode electron gun. Rev. Sci. Instrum. 71, 388.CrossRefGoogle Scholar
Gruzdev, V.A., Kreindel, Yu.E. & Larin, Yu.M. (1974). Effect of ionization on the position of the emitting surface of the plasma in a high-voltage gap with a plasma cathode. Soviet Phys. Techn. Phys. 18, 1465.Google Scholar
Gushenets, V.I., Oks, E.M., Yushkov, G.Yu. & Rempe, N.G. (2003). Current status of the plasma emission electronics. I. Basic physical processes. Laser Part. Beams 21, 123.CrossRefGoogle Scholar
Hershcovitch, A. (1993). Observation of a very high electron current extraction mode in a hollow cathode discharge. J. Appl. Phys. 74, 728.CrossRefGoogle Scholar
Ivanov, A.A. & Leiman, V.G. (1977). Ignition of a beam-plasma discharge by an intense electron beam. Plasma Phys. Rept. 3, 780.Google Scholar
Ivanov, A.A., Serov, A.A., Kniazev, L.N. & Muraviov, S.V. (1999). Efficiency of Electron-beam energy deposition in a beam-plasma discharge. Plasma Phys Rept. 25, 4652.Google Scholar
Klimov, A.S., Burdovitsin, V.A. & Oks, E.M. (2007). Plasma localization in extended hollow cathode of ribbon electron beam plasma source in fore-vacuum pressure range. Russian Phys. J. 50, 310.CrossRefGoogle Scholar
Klimov, A.S., Burdovitsin, V.A., Burachevsky, Yu.A. & Oks, E.M. (2008). Inhomogeneous extended hollow cathode discharge for raising the current density in a fore-vacuum plasma source of a ribbon electron beam. Techn. Phys. 53, 432435.CrossRefGoogle Scholar
Koval, N.N., Oks, E.M., Kreindel, Yu.E., Schanin, P.M. & Gavrilov, N.V. (1992). Broad beam electron guns with plasma cathodes. Nucl. Instr. Meth. Phys. Res. A 312, 417.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Krasik, Ya.E., Gleizer, J.Z., Krokhmal, A., Chirko, K., Sayapin, A., Felsteiner, J., Bernshtam, V. & Gushenets, V.I. (2005). High-current electron sources based on gaseous discharges. Vacuum 77, 391.CrossRefGoogle Scholar
Kreindel, Yu.E. (1977). Plasma Electron Sources (in Russian). Moscow: Atomizdat.Google Scholar
Leonhardt, D., Walton, S.G. & Fernsler, R.F. (2007). Fundamentals and applications of a plasma-processing system based on electron-beam ionization. Phys. Plasmas. 14, 057103.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Liu, J.L., Zhan, T.W., Zhang, J., Liu, Z.X., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Medovnik, A.V., Burachevsky, Yu.A., Burdovitsin, V.A. & Oks, E.M. (2008). Carbon films, prepared by electron beam evaporation of graphite target. Proc. of 9th Int. Conf. on Modification of Materials with Particle Beams and Plasma FlowsTomsk, Russia.Google Scholar
Mytnikov, A.V., Oks, E.M. & Chagin, A.A. (1998). The plasma cathode electron source for generation of beams in fore-vacuum pressure range. Instr. Exper. Techn. 41, 234.Google Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Oks, E.M. (1992). Physics and technique of plasma electron sources. Plasma Sour. Sci. Technol. 1, 249.CrossRefGoogle Scholar
Oks, E.M. & Schanin, P.M. (1999). Development of plasma cathode electron guns. Phys. Plasmas 7, 1649.CrossRefGoogle Scholar
Oks, E.M. (2006). Plasma Cathode Electron Sources – Physics, Technology, Applications. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Osipov, I.V. & Rempe, N.G. (2000). A plasma-cathode electron source designed for Industrial use. Review of scientific instruments. Rev. Sci. Instrum. 71, 1638.CrossRefGoogle Scholar
Raizer, Y.P. (1991). Gas Discharge Physics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Vizir, A.V., Oks, E.M., Schanin, P.M. & Yushkov, G.Yu. (1997). Non-sustainable glow hollow cathode discharge for wide-aperture ionic sources. Techn. Phys. 42, 611.CrossRefGoogle Scholar
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.CrossRefGoogle Scholar
Zaviyalov, M.A., Kreindel, Yu.E., Novikov, A.A. & Shunturin, L.P. (1989). Plasma processes in Technological Electron Guns (in Russian). Moscow: Energoatomizdat.Google Scholar
Zharinov, A.V., Kovalenko, Yu.A., Roganov, I.S. & Teryukanov, P.M. (1986 a). The plasma electron emitter with grid stabilization. Soviet Phys. Techn. Phys. 31, 39.Google Scholar
Zharinov, A.V., Kovalenko, Yu.A., Roganov, I.S. & Teryukanov, P.M. (1986 b). Theory of electron collectors in gas discharge. Soviet Phys. Techn. Phys. 31, 413.Google Scholar
Zhirkov, I.S., Burdovitsin, V.A., Oks, E.M. & Osipov, I.V. (2006 a). Formation of narrow-focused electron beams generated by a source with a plasma cathode in the fore-vacuum pressure range. Techn. Phys. 51, 786.CrossRefGoogle Scholar
Zhirkov, I.S., Burdovitsin, V.A., Oks, E.M. & Osipov, I.V. (2006 b). Discharge initiation in a hollow-cathode plasma source of electrons. Techn. Phys. 51, 1379.CrossRefGoogle Scholar
Zhirkov, I.S., Burdovitsin, V.A. & Oks, E.M. (2007). Influence of the longitudinal magnetic field in the accelerating gap on the limiting parameters of a plasma electron source operating in the fore-vacuum pressure range. Techn. Phys. 52, 1217.CrossRefGoogle Scholar