Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T04:42:11.378Z Has data issue: false hasContentIssue false

Field distributions and resonance absorption in a laser plasma filament

Published online by Cambridge University Press:  09 March 2009

Gu Min
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P. R. China
Tan Weihan
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P. R. China

Abstract

In this paper we have theoretically studied the field distributions and resonance absorption in a laser-produced plasma filament. Under the condition of the cold plasma we derive the field equations, as well as their analytical solutions, to the radial and axial components of the electric field. Then, by the numerical calculations, we find that there exists a tunnel effect along the radial direction of the filament, i.e., the electric field reaches a maximum near the radial resonance point r0. Thus, the curves of variance of the radial and axial field components are obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 447.Google Scholar
Denisov, N. G. 1957 Sov. Phys. JETP, 4, 544.Google Scholar
Erokhin, N. S., Zakharov, V. E. & Moiseev, S. S. 1969 Sov. Phys. JETP, 29, 101.Google Scholar
Erokhin, N. S., Moiseev, S. S. & Mukhin, V. V. 1974 Nucl. Fusion, 14, 333.CrossRefGoogle Scholar
Ginzburg, V. L. 1970 The Propagation of Electromagnetic Waves in Plasmas, Pergamon, New York, p. 262.Google Scholar
Herbst, M. J. et al. 1981 Phys. Rev. Lett., 46, 328.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. 1984 Phys. Rev. Lett., 53, 1650.CrossRefGoogle Scholar
Kamke, K. 1977 Differentialgleichungen Lösungsmethoden und Lösungen (Chinese), Science, Beijing, 514.CrossRefGoogle Scholar
Kruer, W. L. 1985 Comments Plasma Phys. Controlled Fusion, 9, 63.Google Scholar
Short, R. W. et al. 1984 Phys. Rev. Lett., 52, 1496.CrossRefGoogle Scholar
Ting-Wei, Tang 1970 Radio Science, 5, 111.CrossRefGoogle Scholar
Tripathi, V. K. & Pitale, L. A. 1977 J. Appl. Phys., 48, 3288.CrossRefGoogle Scholar
Tan, Weihan et al. 1986 Laser and Particle Beams, 4, 231.Google Scholar
Zhuxi, Wang & Dunren, Guo 1965 Introduction to Special Functions, Science, Beijing, 361.Google Scholar
Willi, O. & Lee, P. H. Y. 1985 Opt. Commun. 55, 120.CrossRefGoogle Scholar