Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T08:35:04.800Z Has data issue: false hasContentIssue false

Electron acceleration to high energy by using two chirped lasers

Published online by Cambridge University Press:  28 February 2007

D. N. GUPTA
Affiliation:
Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon, Korea
H. SUK
Affiliation:
Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon, Korea

Abstract

A scheme for electron acceleration by two crossing chirped lasers has been proposed. An important effect of a frequency chirp of the laser is investigated. Two high intensity chirped lasers, with the same amplitude and frequency, crossing at an arbitrary angle in a vacuum, interfere, causing modulation of laser intensity. An electron experiences a ponderomotive force due to the resultant field of lasers and gains considerable energy. For a certain crossing angle, the electron gains maximum energy due to the constructive interference. A frequency chirp of the laser plays an important role during the electron acceleration in a vacuum. The electron momentum increases due to the frequency chirp. Hence, the electron energy is enhanced during acceleration.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cicchitelli, L., Hora, H. & Postle, R. (1990). Longitudinal field components for laser beams in vacuum. Phys. Rev. A 41, 37273732.Google Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.Google Scholar
Esarey, E., Sprangle, P. & Krall, J. (1995). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 54435453.Google Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/gamma-ray sources. Laser Part. Beams 23, 309314.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 61166.Google Scholar
Gupta, D.N. & Ryu, C.M. (2005). Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas 12, 053103053108.Google Scholar
Gupta, D.N. & Suk, H. (2006a). Combined role of frequency variation and magnetic field on laser electron acceleration. Phys. Plasmas 13, 013105013110.Google Scholar
Gupta, D.N. & Suk, H. (2006b). Frequency chirping for resonance-enhanced electron energy during laser acceleration. Phys. Plasmas 13, 044507044508.Google Scholar
Hafz, N., Hur, M.S., Kim, G.H., Kim, C., Ko, I.S. & Suk, H. (2006). Quasi-monoenergetic electron beam generation by using a pinhole like collimator in a self-modulated laser wakefield acceleration. Phys. Rev. E 73, 016405.Google Scholar
Hartemann, F.V., Van-Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C., Baldis_Jr., H.A., Gupta, A. & Kerman, A.K. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 58, 50015012.Google Scholar
Hauser, T., Scheid, W. & Hora, H. (1994). Acceleration of electrons by intense laser pulses in vacuum. Phys. Lett. A 186, 189192.Google Scholar
He, F., Yu, W., Lu, P., Xu, H., Qian, L., Shen, B., Yuan, X., Li, R. & Xu, Z. (2003). Ponderomotive acceleration of electrons by a tightly focused intense laser beam. Phys. Rev. E 68, 046407.Google Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337338.Google Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 8, 135144.Google Scholar
Katsouleas, T. (1986). Physical mechanisms in the plasma wake-field accelerator. Phys. Rev. A 33, 20562064.Google Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.Google Scholar
Kitagawa, Y., Sentoku, Y., Akamatsu, S., Sakamoto, W., Kodama, R., Tanaka, K.A., Azumi, K., Norimatsu, T., Matsuoka, T., Fujita, H. & Yoshida, H. (2004). Electron Acceleration in an Ultraintense-Laser-Illuminated Capillary. Phys. Rev. Lett. 92, 205002.Google Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser-plasma accelerator. Laser Part. Beams 24, 255259.Google Scholar
Liu, H., He, X.T. & Hora, H. (2006). Additional acceleration and collimation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction. Appl. Phys. B 82, 9397.Google Scholar
Maher, W.E. & Hall, R.B. (1976). Experimental study of effects from two laser pulses. J. Appl. Phys. 47, 24862493.Google Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.Google Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606608.Google Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (2002). Laser wake filed acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.Google Scholar
Rosenbluth, M.N. & Liu, C.S. (1972). Excitation of plasma waves by two laser beams. Phys. Rev. Lett. 29, 701705.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electrons transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.Google Scholar
Salamin, Y.I. & Keitel, C.H. (2000). Subcycle high electron acceleration by crossed laser beams. Appl. Phys. Lett. 77, 10821084.Google Scholar
Sari, A.H., Osman, F., Doolan, K.R., Ghoranneviss, M., Hora, H., Hopfl, R., Benstetter, G. & Hantehzadeh, M.H. (2005). Application of laser driven fast high density plasma blocks for ion implantation. Laser Part. Beams 23, 467473.Google Scholar
Shvets, G. & Fisch, N.J. (2001). Parametric excitations of fast plasma waves by counter propagating laser beams. Phys. Rev. Lett. 86, 33283331.Google Scholar
Singh, K.P. (2005). Electron acceleration by a chirped short intense laser pulse in vacuum. Appl. Phys. Lett. 87, 254102.Google Scholar
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. (1992). Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 22002203.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.Google Scholar
Stupakov, G.V. & Zolotorev, M.S. (2001). Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches. Phys. Rev. Lett. 86, 52745277.Google Scholar
Suk, H., Barov, N., Rosenzweig, J.B. & Esarey, E. (2001). Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 10111014.Google Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.Google Scholar
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D: Appl. Phys. 36, R151R165.Google Scholar
Umstadter, D., Kim, J.U. & Dodd, E. (1994). Nonlinear plasma waves resonantly driven by optimized laser pulse trains. Phys. Rev. Lett. 72, 12241227.Google Scholar
Wang, P.X., Ho, Y.K., Yuan, X.O., Kong, Q., Cao, N., Sessler, A.M., Esarey, E. & Nishida, Y. (2001). Vacuum electron acceleration by an intense laser. Appl. Phys. Lett. 78, 225355.Google Scholar
Wu, H.C., Sheng, Z.M., Zhang, Q.J., Cang, Y. & Zhang, J. (2005). Manipulating ultrashort intense laser pulses by plasma Bragg gratings. Phys. Plasmas 12, 113103113105.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin target: the laser break-out afterburner. Laser Part. Beams 24, 291298.Google Scholar