Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T19:24:23.712Z Has data issue: false hasContentIssue false

Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets

Published online by Cambridge University Press:  04 November 2008

P. McKenna*
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
D.C. Carroll
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
O. Lundh
Affiliation:
Department of Physics, Lund University, Lund, Sweden
F. Nürnberg
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
K. Markey
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
S. Bandyopadhyay
Affiliation:
STFC, Rutherford Appleton Laboratory, Didcot, United Kingdom
D. Batani
Affiliation:
Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
R.G. Evans
Affiliation:
The Blackett Laboratory, Imperial College London, London, United Kingdom
R. Jafer
Affiliation:
Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
S. Kar
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
D. Neely
Affiliation:
STFC, Rutherford Appleton Laboratory, Didcot, United Kingdom
D. Pepler
Affiliation:
STFC, Rutherford Appleton Laboratory, Didcot, United Kingdom
M.N. Quinn
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
R. Redaelli
Affiliation:
Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
M. Roth
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
C.-G. Wahlström
Affiliation:
Department of Physics, Lund University, Lund, Sweden
X.H. Yuan
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
M. Zepf
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
*
Address correspondence and reprint requests to: Paul McKenna, SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom. E-mail: [email protected]

Abstract

The properties of beams of high energy protons accelerated during ultraintense, picosecond laser-irradiation of thin foil targets are investigated as a function of preplasma expansion at the target front surface. Significant enhancement in the maximum proton energy and laser-to-proton energy conversion efficiency is observed at optimum preplasma density gradients, due to self-focusing of the incident laser pulse. For very long preplasma expansion, the propagating laser pulse is observed to filament, resulting in highly uniform proton beams, but with reduced flux and maximum energy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.A., Sonobel, R., Kawatal, S., Miyazaki, S., Sakai, K., Miyauchi, K., Kikuchi, T., Platonov, K.Y. & Nemoto, K. (2006). Effect of a laser prepulse on fast ion generation in the interaction of ultra-short intense laser pulses with a limited-mass foil target. Plasma Phys. Contr. Fusion 48, 16051619.CrossRefGoogle Scholar
Badziak, J. (2007). Laser-driven generation of fast particles. Opto-electr. Rev. 15, 112.CrossRefGoogle Scholar
Benattar, R., Popovics, C. & Sigel, R. (1979). Polarized light interferometer for laser fusion studies. Rev. Scientif. Instr. 50, 15831585.Google Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Techn. 49, 412439.CrossRefGoogle Scholar
Carroll, D.C., McKenna, P., Lundh, O., Lindau, F., Wahlström, C.-G., Bandyopadhyay, S., Pepler, D.A., Neely, D., Kar, S., Simpson, P., Markey, K., Zepf, M., Bellei, C., Evans, R.G., Redaelli, R. & Batani, D. (2007). Active manipulation of the spatial energy distribution of laser accelerated proton beams. Phys. Rev. E 76, 065401.CrossRefGoogle ScholarPubMed
Cowan, T., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.Google Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, J., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design operation and interactions at 5 × 1020 W cm−2. Laser Part. Beams 23, 8793.Google Scholar
Dromey, B., Kar, S., Zepf, M. & Foster, P.S. (2004). The plasma mirror – A subpicosecond optical switch for ultrahigh power lasers. Rev. Scientif. Instr. 75, 645649.Google Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.Google Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.Google Scholar
Fuchs, J., Cecchetti, C.A., Borghesi, M., Grismayer, T., D'humieres, E., Antici, P., Atzeni, S., Mora, P., Pipahl, A., Romagnani, L., Schiavi, A., Sentoku, Y., Toncian, T., Audebert, P. & Willi, O. (2007). Laser-foil acceleration of high-energy protons in small-scale plasma gradients. Phys. Rev. Lett. 99, 015002.CrossRefGoogle ScholarPubMed
Fuchs, J., Cowan, T., Audebert, P., Ruhl, H., Gremillet, L., Kemp, A., Allen, M., Blazevic, A., Gauthier, J.C., Geissel, M., Hegelich, B.M., Karsch, S., Parks, P., Roth, M., Sentoku, Y., Stephens, R. & Campbell, E.M. (2003). Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. Phys. Rev. Lett. 91, 255002.Google Scholar
Glinec, Y., Genoud, G., Lundh, O., Persson, A. & Wahlström, C.-G. (2008). Evolution of energy spectrum from laser-accelerated protons with a 100 fs intense prepulse. Appl. Phys. B In press.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K.J., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002.Google Scholar
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.Google Scholar
Lee, H.J., Pae, K.H., Suk, H. & Hahn, S.J. (2004). Enhancement of high-energy ion generation by preplasmas in the interaction of an intense laser pulse with overdense plasmas. Phys. Plasmas 11, 17261729.Google Scholar
Lindau, F., Lundh, O., Persson, A., McKenna, P., Osvay, K., Batani, D. & Wahlström, C.-G. (2005). Laser-accelerated protons with energy dependent beam direction. Phys. Rev. Lett. 95, 175002.CrossRefGoogle ScholarPubMed
Lundh, O., Lindau, F., Persson, A., Wahlström, C.-G., McKenna, P. & Batani, D. (2007). Influence of shock waves on laser-driven proton acceleration. Phys. Rev. E 76, 026404.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K. & Umstadter, D. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.Google Scholar
McKenna, P., Ledingham, K.W.D., Yang, J.M., Robson, L., McCanny, T., Shimizu, S., Clarke, R.J., Neely, D., Spohr, K., Chapman, R., Singhal, R.P., Krushelnick, K., Wei, M.S. & Norreys, P.A. (2004). Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils. Phys. Rev. E 70, 036405.Google Scholar
McKenna, P., Lindau, F., Lundh, O., Carroll, D.C., Clarke, R.J., Ledingham, K.W.D., McCanny, T., Neely, D., Robinson, A.P.L., Robson, L., Simpson, P.T., Wahlström, C.-G. & Zepf, M. (2007). Low- and medium-mass ion acceleration driven by petawatt laser plasma interactions. Plasma Phys. Contr. Fusion 49, B223.Google Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.Google Scholar
Pert, G.J. (1981). Algorithms for the self-consistent generation of magnetic fields in plasmas J. Computat. Phys. 43, 111163.Google Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlström, C.-G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nat. Phys. 3, 5862.Google Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.C., Audebert, P., Fuchs, J., Meyer-Ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. S.T.A.B. 5, 061301.Google Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.Google Scholar
Schollmeier, M., Harres, K., Nürnberg, F., Blazevic, A., Audebert, P., Brambrink, E., Fernandez, J.C., Flippo, K.A., Gautier, D.C., Geissel, M., Hegelich, B.M., Schreiber, J. & Roth, M. (2008). Laser beam-profile impression and target thickness impact on laser-accelerated protons. Phys. Plasmas 15, 053101CrossRefGoogle Scholar
Schollmeier, M., Roth, M., Blazevic, A., Brambrink, E., Cobble, J.A., Fernandez, J.C., Flippo, K.A., Gautier, D.C., Habs, D., Harres, K., Hegelich, B.M., Hessling, T., Hoffmann, D.H.H., Letzring, S., Nürnberg, F., Schaumann, G., Schreiber, J. & Witte, K. (2007). Laser ion acceleration with micro-grooved targets. Nucl. Instr. Meth. Phys. Res. A 577, 186190.Google Scholar
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, K., Mourou, G., Sheng, Z.M. & Umstadter, D. (2002). High-energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B 74, 207215.Google Scholar
Seo, J.T., Yoo, S.H. & Hahn, S.J. (2007). Effects of underdense preplasma on the energetic proton generation in ultraintense short pulse laser interaction with an overdense plasma slab. J. Phys. Soc. Jpn 76, 114501.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, C., Singh, M.S., Wilks, S.C., Mackinnon, A.J., Offenberger, A.A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R.J., Cristofari, G., Del Prete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-MeV per nucleon ions in the controlled amount of matter mode (CAM) by using causally isolated targets. Laser Part. Beams 25, 8591.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M.S., Hatchett, S.P., Key, M.H., Pennington, D.M., Mackinnon, A.J. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Yogo, A., Daido, H., Fukuki, A., Li, Z., Ogura, K., Sagisaka, A., Pirozhkov, S., Nakamura, S., Iwashita, Y., Shirai, T., Noda, A., Oishi, Y., Nayuki, T., Fuji, T., Nemoto, K., Choi, Y., Sung, J.H., Ko, D.-K., Lee, J., Kaneda, M. & Itoh, A. (2007). Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Phys. Plasmas 14, 0431104.CrossRefGoogle Scholar