Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T07:41:39.872Z Has data issue: false hasContentIssue false

The effect of ultraviolet lasers on conversion of methane into higher hydrocarbons

Published online by Cambridge University Press:  08 July 2013

H.A. Navid
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
E. Irani
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
R. Sadighi-Bonabi*
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
*
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Departments of Physics, Sharif University of Technology, Tehran, Iran. E-mail: [email protected]

Abstract

Conversion of CH4 molecule into higher hydrocarbons using two different wavelengths of 248 nm KrF laser and 355 nm of third harmonic of Nd:YAG laser is studied experimentally and theoretically. The stable products are analyzed and the effect of pressure on conversion of methane is measured. The detected reaction products are C2H2, C2H4, and C2H6. The conversion efficiency of 33.5% for 355 nm in comparison to 2.2% conversion for 248 nm for C2H2 is achieved. The potential of laser parameters as an important variable in controlling of final products is investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abu-Samha, M. & Madsen, L.B. (2009). Theory of strong-field ionization of aligned CO2. Phys. Rev. A 80, 023401.CrossRefGoogle Scholar
Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, F., Strehle, M. & Gerber, G. (1998). Evolutionary algorithms and their application to optimal control studies. Sci. 282, 91.Google Scholar
Baker, S., Robinson, J.S., Lein, M., Chirilă, C.C., Torres, R., Bandulet, H.C., Comtois, D., Kieffer, J.C., Villeneuve, D.M., Tisch, J.W. & Marangos, J.P. (2008). Dynamic two-center interference in high-order harmonic generation from molecules with attosecond nuclear motion. Phys. Rev. Lett. 101, 053901.CrossRefGoogle ScholarPubMed
Bartus, K. & Bródka, A. (2011). Methane in carbon nanotube: molecular dynamics simulation. Molecular Phys. 109, 1691.CrossRefGoogle Scholar
Bauer, D. & Ceccherini, F. (2001). A numerical ab initio study of harmonic generation from a ring shaped model molecule in laser fields. Laser Part. Beams 19, 8590.CrossRefGoogle Scholar
Bauer, D. (2002). Molecules and clusters in intense laser field. Laser Part. Beams 20, 541542.CrossRefGoogle Scholar
Brumer, P. & Shapiro, M. (2009). Quantum coherance in the control of molecular processes. Laser Part. Beams 16, 599603.CrossRefGoogle Scholar
Chen, Z., Wang, X., Wei, B., Lin, S., Hutton, R. & Zou, Y. (2011). Ionization and dissociation of methane in a nanosecond laser field. Phys. Scr. 144, 014065 .Google Scholar
Dry, M.E. (2002). The Fischer-Tropsch process. Catal. Today 71, 227241.CrossRefGoogle Scholar
Galasso, V. (1992). Ab initio study of multiphoton absorption properties of methane, ethane, propane, and butane. Chem. Phys. 161, 189.CrossRefGoogle Scholar
Gondal, M.A., Yamani, Z.H., Dastageer, A., Ali, M. A. & Arfaj, A. (2003). Photo-conversion of Methane into higher hydrocarbons using 355 nm. Laser Rad. Spectroscopy Lett. 36, 313326 .CrossRefGoogle Scholar
Gondal, M.A., Hameed, A., Yamani, Z.H. & Arfaj, A. (2004). Photo-catalytic transformation of Methane into Methanol under UV laser irradiation over WO3, TiO2 and NiO Catalysts. Chem. Phys. Lett. 392, 372377.CrossRefGoogle Scholar
Graham, P., Fang, X., Ledingham, W.D., Sinohal, R., Mccanny, T., Smith, D.J., Kosmidis, C. & Harrevelt, R.V. (2000). Photodissociation of methane: Exploring potential energy surfaces. J. chem. Phys. 125, 124302.Google Scholar
He, F. & Becker, A. (2008). Coherent control of electron localization in a dissociation hydrogen molecular ion. J. Phys. B: At Mol. Opt. Phys. 41, 074017 /1–7.CrossRefGoogle Scholar
Heng, H.C. & Suhaili Idrus, J. (2004). Conversion of methane to useful chemical and fules. Gas Chem. 13, 63.Google Scholar
Hering, P.H. & Cornaggia, C. (1998). Molecules and Clusters in intense laser fields. Phys. Rev. A 57, 4572.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3746.CrossRefGoogle Scholar
Irani, E., Zare, S., Navid, H.A., Dehghani, Z. & Sadighi-Bonabi, R. (2012). The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule. Laser Part. Beams 30, 357367.CrossRefGoogle Scholar
Kong, F., Luo, Q., Xu, H., Sharifi, M., Song, D. & Leang, S. (2006). Explosive photo-dissociation of methane induced by ultra fast intense laser. J. Chem. Phys. A 125, 133320.Google Scholar
Lezius, M., Blanchet, V., Rayner, D.M., Villeneave, D.M., Stolow, A. & Yu, M. (2000). Non adiabatic multielectrn dynamics in strong field molecular ionization. Phys. Rev. Lett. 86, 5154.CrossRefGoogle Scholar
Lunsford, J.H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today 63, 165174.CrossRefGoogle Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Maslova, Yu.Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.Google Scholar
Mebel, A.M., Lin, Sh.H. & Chang, Ch.H. (1997). Theoretical study of vibronic spectra and photodissociation pathways of methane. J. Chem. Phys. 106, 2612.CrossRefGoogle Scholar
Picon, A., Bahabad, A., Kapteyn, H.C., Murnane, M.M. & Becker, A. (2011). Two- center interferences in photoionization of a dissociating H2+ molecule. Phys. Rev. A 83, 013414.CrossRefGoogle Scholar
Romanzin, C., Arzoumanian, E., Es-Sebbar, E., Jolly, A., Perrier, S., Gazeau, M.C. & Bénilan, Y. (2010). Combined experimental and theoretical studies on methane photolysis at 121.6 nm and 248 nm implications on a program of laboratory simulations of Titan's atmosphere. Planetary Space Sci. 58, 17481757.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009). Observation of quasi mono- energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams 27, 223231.CrossRefGoogle Scholar
Sadighi-Bonabi, R. & Rahmatollahpur, Sh. (2010). Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model. Phys. Rev. A 81, 023408 /1–7.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010 a). Dielectric magnifying of plasma blocks by nonlinear force acceleration with delayed electron heating. Phys. Plasmas 17, 113108.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010b). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.CrossRefGoogle Scholar
Sagan, C. & Chyba, Ch. (1997). The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Sci. 276, 12171221.CrossRefGoogle ScholarPubMed
Sieck, L.W. & Lias, Sh.G. (1976). Rate coefficients for ion-molecule reactions, ions containing C and H. J. Phys. Chem. Ref. Data 5, 11231146.CrossRefGoogle Scholar
Son, S.K. & Chu, Sh.I. (2009). Theoretical study of orientation- dependent multiphoton ionization of polyatomic molecules in intense ultrashort laser fields: A new time-dependent vornoi-cell finite difference method. Chem. Phys. 366, 91102.CrossRefGoogle Scholar
Sugimori, K., Ito, T., Takta, Y., Ichitani, K., Nagao, H. & Nishikawa, K. (2007). Theoretical study of above- threshold dissociation on diatomic molecules by using nonresonant intense laser pulses. J. Phys. Chem. A 111, 94179423.CrossRefGoogle ScholarPubMed
Swain, M.R., Vasisht, G. & Tinetti, G. (2008). The presence of methane in the atmosphere of an extrasolar planet. Nat. 452, 20.Google ScholarPubMed
Tsang, W. & Hampson, R.F. (1986). Rate coefficients for ion-molecule reactions, organic ions other than those containing only C and H. J. Phys. Chem. Ref. Data 15, 1087.Google Scholar
Tzallas, P. & Langeley, A.J. (2000). Unusual fragmentation pattern from the dissociation of small molecule. Laser Part. Beams 18, 417432.Google Scholar
Wang, S., Tang, X., Gao, L., Elshakre, M. & Kong, F. (2003). Dissociation of methane in intense laser fields. J. Phys. Chem. A 107, 32.CrossRefGoogle Scholar
Wang, J.H., Liu, K., Min, Z., Su, H., Bersohn, R., Preses, J. & Larese, J.Z. (2000). Vacuum ultraviolet photochemistry of CH4 and isotopomers. II. Product channel fields and absorption spectra. J. Chem. Phys. 113, 4146.CrossRefGoogle Scholar
Wang, C., Song, D., Liu, Y. & Kong, F. (2006). Pulse width effect on the dissociation probability of CH4+ in the intense femtosecond laser field. Chinese Sci. Bull. 51, 10.Google Scholar
Yamani, Z.H. (2005). Clean production of hydrogen via laser-induced methane conversion. Energy Sour. 27, 661668.CrossRefGoogle Scholar
Yuliati, L., Itoh, H. & Yoshida, H. (2008). Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chem. Phys. Lett. 452, 178182 .CrossRefGoogle Scholar
Zare, S., Irani, E., Navid, H. A., Dehghani, Z., Anvari, A. & Sadighi-Bonabi, R. (2013). Dissociation of C–H molecular bond of methane by pulse shaped ultra-intense laser field. Chem. Phys. Lett. 560, 6065.CrossRefGoogle Scholar
Zepeda, L.G., Villagómez, R. & Joseph-Nathan, P. (1998). Theoretical and experimental APT and DEPT behavior of methane. Spectroscopy Lett. 31, 31.Google Scholar
Zewail, A.H. (1994). Femto Chemistry. Hackensack: World Scientific.Google Scholar