Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T23:54:57.907Z Has data issue: false hasContentIssue false

Effect of the axial magnetic field on coexisting stimulated Raman and Brillouin scattering of a circularly polarized beam

Published online by Cambridge University Press:  06 December 2016

Ashish Vyas
Affiliation:
Centre for Energy Studies, IIT Delhi, Delhi, 110016, India
Swati Sharma
Affiliation:
Centre for Energy Studies, IIT Delhi, Delhi, 110016, India
Ram Kishor Singh*
Affiliation:
Centre for Energy Studies, IIT Delhi, Delhi, 110016, India
R.P. Sharma
Affiliation:
Centre for Energy Studies, IIT Delhi, Delhi, 110016, India
*
Address correspondence and reprint requests to: R.K. Singh, Centre for Energy Studies, IIT Delhi, Delhi, 110016, India. E-mail: [email protected]

Abstract

This paper presents a model to study the two prominent coexisting instabilities, stimulated Raman (SRS), and stimulated Brillouin scattering (SBS) in the presence of background axial magnetic field. In the context of laser-produced plasmas, this model is very useful in the situations where a self-generated axial magnetic field is present as well as where an external axial magnetic field is applied. Due to the interplay between both the scattering processes, the behavior of one scattering process is greatly modified in the presence of another coexisting scattering process. The impact of this coexisting phenomenon and axial magnetic field on the back reflectivity of scattered beams has been explored. It has been demonstrated that the back reflectivity gets modified significantly due to the coexistence of both the scattering processes (SRS and SBS) as well as due to the axial magnetic field. Results are also compared with the three-wave interaction case (isolated SRS or SBS case).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeva, T., Gordienko, S. & Pukhov, A. (2006). Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404.CrossRefGoogle ScholarPubMed
Barr, H.C., Berwick, S.J. & Mason, P. (1998). Six-wave forward scattering of short-pulse laser light at relativistic intensities. Phys. Rev. Lett. 81, 2910.Google Scholar
Briand, J., Adrian, V., Tamer, M.El., Gomes, A., Quemener, Y., Dinguirard, J.P. & Kieffer, J.C. (1985). Axial magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 54, 38.Google Scholar
Chen, F.F. (1984). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.CrossRefGoogle Scholar
Guérin, S., Laval, G., Mora, P., Adam, J.C., Heron, A. & Bendib, A. (1995). Modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 2, 2807.CrossRefGoogle Scholar
Guérin, S., Mora, P. & Laval, G. (1998). Parametric instabilities due to relativistic electron mass variation. Phys. Plasmas 5, 376.CrossRefGoogle Scholar
Hao, L., Liu, Z.J., Hu, X.Y. & Zheng, C.Y. (2013). Competition between the stimulated Raman and Brillouin scattering under the strong damping condition. Laser Part. Beams 31, 203.Google Scholar
Harding, A.K. & Lai, D. (2006). Physics of strongly magnetized neutron stars. Rep. Progr. Phys. 69, 9.Google Scholar
Hellsten, T. & Villard, L. (1988). Power deposition for ion cyclotron heating in large tokamaks. Nucl. Fusion 28, 285.CrossRefGoogle Scholar
Khan, M., Das, C., Chakraborty, B., Desai, T., Pant, H.C., Srivastava, M.K. & Lawande, S.V. (1998 a). Self-generated magnetic field and Faraday rotation in laser produced plasma. Phys. Rev. E 58, 925.Google Scholar
Khan, M., Sarkar, S., Desai, T. & Pant, H.C. (1998 b). Modification of stimulated Brillouin scattering due to magnetic anisotropy in laser plasma interaction. Laser Part. Beams 16, 491.Google Scholar
Kolber, T., Rozmus, W. & Tikhonchuk, V.T. (1995). Saturation of backward stimulated Raman scattering and enhancement of laser light scattering in plasmas. Phys. Plasmas 2, 256.Google Scholar
Kruer, W.L. (1974). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.Google Scholar
Labaune, C., Baldis, H.A., Renard, N., Schifano, E. & Michard, A. (1997). Interplay between ion acoustic waves and electron plasma waves associated with stimulated Brillouin and Raman scattering. Phys. Plasmas 4, 423.CrossRefGoogle Scholar
Li, X.Y., Wang, J.X., Zhu, W.J., Ye, Y., Li, J. & Yu, Y. (2011). Enhanced inner-shell x-ray emission by femtosecond-laser irradiation of solid cone targets. Phys. Rev. E 83, 046404.Google Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendining, S.G., Glenzer, S.H., Hann, S.W., Kauffman, R.L., Landen, O.L. & Suter, L. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339.Google Scholar
Liu, C.S. & Tripathri, V.K. (1994). Interaction of Electromagnetic waves with Electron beams and Plasmas. Singapore: World Scientific.CrossRefGoogle Scholar
Mahmoud, S.T. & Sharma, R.P. (2001). Effect of pump depletion and self-focusing (hot spot) on stimulated Raman scattering in laser-plasma interaction. Laser Part. Beams 64, 613.Google Scholar
Michel, D.T., Depierreux, S., Stenz, C., Tassin, V. & Labaune, C. (2010). Exploring the saturation levels of stimulated Raman scattering in the absolute regime. Phys. Rev. Lett. 104, 255001.Google Scholar
Mondal, S., Narayanan, V., Ding, W.J., Lad, A.D., Hao, B., Ahmad, S., Wang, W.M., Sheng, Z.M., Sengupta, S., Kaw, P., Das, A. & Kumar, G.R. (2012). Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc. Natl. Acad. Sci. USA 109, 8011.CrossRefGoogle ScholarPubMed
Montgomery, D.S., Albright, B.J., Barnak, D.H., Chang, P.Y., Davies, J.R., Fiksel, G., Froula, D.H., Kline, J.L., Macdonald, M.J., Sefkow, A.B., Yin, L. & Betti, R. (2015). Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas 22, 010703.Google Scholar
Nicolaï, P., Vandenboomgaerde, M., Canaud, B. & Chaigneau, F. (2000). Effects of self-generated magnetic fields and nonlocal electron transport in laser produced plasmas. Phys Plasmas 7, 4250.Google Scholar
Nijmudin, Z., Tatarakis, M., Pukhov, A., Clark, E.L., Dangor, A.E., Fayre, J., Malka, V., Neely, D., Santala, M.I.K. & Krushelnick, K. (2001). Measurements of the inverse faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett. 87, 215004.Google Scholar
Paknezhad, A. (2012). Effect of relativistic nonlinearity on the growth rate of Brillouin instability in the interaction of a short laser pulse with an underdense plasma. Phys. Scr. 86, 065402.CrossRefGoogle Scholar
Perkins, F.W. (1977). Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances. Nucl. Fusion 17, 1197.CrossRefGoogle Scholar
Remington, B.A., Drake, R.P., Takabe, H. & Arnett, D. (1999). Modeling astrophysical phenomena in the laboratory with intense lasers. Science 284, 1488.CrossRefGoogle Scholar
Sandhu, A.S., Dharmadhikari, A.K., Rajeev, P.P., Kumar, G.R., Sengupta, S., Das, A. & Kaw, P.K. (2002). Laser-generated ultrashort multimegagauss magnetic pulses in plasmas. Phys. Rev. Lett. 89, 225002.CrossRefGoogle ScholarPubMed
Sentoku, Y., Rahl, H., Mima, K., Tanaka, K.A. & Kishimoto, Y. (1999). Plasma jet formation and magnetic-field generation in the intense laser plasma under oblique incidence. Phys. Plasmas 6, 2855.Google Scholar
Sharma, R.P. & Dragila, R. (1988). Effect of a self-generated dc-magnetic field on forward Raman scattering and hot electrons in laser produced plasmas. Phys. Fluids 31, 1695.CrossRefGoogle Scholar
Sharma, R.P., Vyas, A. & Singh, R.K. (2013). Effect of laser beam filamentation on coexisting stimulated Raman and Brillouin Scattering. Phys. Plasmas 20, 102108.CrossRefGoogle Scholar
Shuller, S. & Porzio, A. (2010). Order statistics and extreme properties of spatially smoothed laser beams in laser-plasma interaction. Laser Part. Beams 28, 463.CrossRefGoogle Scholar
Sodha, M.S., Sharma, R.P. & Kaushik, S.C. (1976). Interaction of intense laser beams with plasma waves: stimulated Raman scattering. J. Appl. Phys. 47, 3518.Google Scholar
Srivastava, M.K., Lawande, S.V., Khan, M., Das, C. & Chakraborty, B. (1992). Axial magnetic field generation by ponderomotive force in a laser-produced plasma. Phys. Fluids B 4, 4086.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Tajima, T. & Mourou, G. (2002). Zettawatt–exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST 5, 031301.Google Scholar
Vyas, A., Singh, R.K. & Sharma, R.P. (2014 a). Combined effect of relativistic and ponderomotive filamentation on coexisting stimulated Raman and Brillouin scattering. Phys. Plasmas 21, 112113.Google Scholar
Vyas, A., Singh, R.K. & Sharma, R.P. (2014 b). Study of coexisting stimulated Raman and Brillouin scattering at relativistic laser power. Laser Part. Beams 32, 657.CrossRefGoogle Scholar
Vyas, A., Singh, R.K. & Sharma, R.P. (2016). Effect of the magnetic field on coexisting stimulated Raman and Brillouin back scattering of an extraordinary mode. Phys. Plasmas 23, 012107.Google Scholar
Walsh, C.J., Villeneuve, D.M. & Baldis, H.A. (1984). Electron plasma-wave production by stimulated Raman scattering: competition with stimulated Brillouin scattering. Phys. Rev. Lett. 53, 1445.Google Scholar
Wang, X., Krishnan, M., Saleh, N., Wang, H. & Umstadter, D. (2000). Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas. Phys. Rev. Lett. 84, 5324.CrossRefGoogle ScholarPubMed