Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T08:48:08.870Z Has data issue: false hasContentIssue false

Effect of super-thermal ions and electrons on the modulation instability of a circularly polarized laser pulse in magnetized plasma

Published online by Cambridge University Press:  08 April 2015

R. Etemadpour*
Affiliation:
Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
N. Sepehri Javan
Affiliation:
Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran
*
Address correspondence and reprint requests to: R. Etemadpour, Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected]

Abstract

The modulation instability of a circularly polarized laser pulse in a magnetized non-Maxwellian plasma is investigated. Based on a relativistic fluid model, the nonlinear interaction of an intense circularly polarized laser beam with a non-Maxwellian magnetized plasma is described. Nonlinear dispersion relation and growth rate of the instability for left- and right-hand polarizations are derived. The effect of temperature, external magnetic field, value of Kappa and state of polarization on the growth rate are analyzed. It is shown that the growth rate increases with increase in the magnetic field for the right-hand polarization and inversely it decreases for the left-hand one. Also it is observed that existence of super-thermal particles causes the decrease in the growth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asenjo, F.A., Munoz, V., Valivia, J.A. & Hada, T. (2009). Circularly polarized wave propagation in magnetofluid dynamics for relativistic electron-positron plasmas. Phys. Plasmas 16, 122108–122108-5.CrossRefGoogle Scholar
Chen, H.Y., Liu, S.Q. & Li, X.Q. (2011). Self-modulation instability of an intense laser beam in a magnetized pair plasma. Phys. Scr. 83, 035502.CrossRefGoogle Scholar
Esarey, E., Krall, J. & Sprangle, P. (1994). Envelope analysis of intense laser pulse self-modulation in plasmas. Phys. Rev. Lett. 72, 28872890.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Feidman, W.C., Asbridge, J.R., Bame, S.J. & Montgomery, M.D. (1973). Double ion streams in the solar wind. J. Geophys. Res. 78, 20172027.CrossRefGoogle Scholar
Hao, L., Liu, X.Y. & Zheng, C.Y. (2013). Competition between the stimulated Raman and Brillouin scattering under the strong damping condition. Laser Part. Beams 31, 203209.CrossRefGoogle Scholar
Hellberg, M.A., Mace, R.L., Armstrong, R.J. & Karlstad, G. (2000). Electron-acoustic waves in the laboratory: An experiment revisited. J. Plasma Phys. 64, 433443.CrossRefGoogle Scholar
Jha, P., Kumar, P., Raj, G. & Upadhyaya, A.K. (2005). Modulation instability of laser pulse in magnetized plasma. Phys. Plasmas 12, 123104123110.CrossRefGoogle Scholar
Korotkov, A.A., Gondhalekar, A. & Akers, R.J. (2000). Observation of MeV energy deuterons produced by knock-on collisions between deuterium–tritium fusion a-particles and plasma fuel ions. Phys. Plasmas 7, 957.CrossRefGoogle Scholar
Kourakis, I. & Shukla, P.K. (2005). Modulated dust-acoustic wave packets in a plasma with non-isothermal electrons and ions. J. Plasma Phys. 71, 185201.CrossRefGoogle Scholar
Lehmann, G., Laedke, E.W. & Spatschek, K.H. (2008). Two-dimensional dynamics of relativistic solitons in cold plasmas. Phys. Plasmas 15, 072307.CrossRefGoogle Scholar
Liu, S.Q. & Li, X.Q. (2000). Self-generated magnetic field by transverse plasmons in laser-produced plasma. Phys. Plasmas 7, 34053412.CrossRefGoogle Scholar
Liu, S.Q. & Li, X.Q. (2001). Numerical analysis of self-generated magnetic field excited by transverse plasmons in a laser-produced plasma. J. Plasma Phys. 66, 223238.CrossRefGoogle Scholar
Maksimovic, M., Pierrard, V. & Lemaire, J.F. (1997). A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron. Astrophys. 324, 725734.Google Scholar
Marklund, M. & Shukla, P.K. (2006). Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591640.CrossRefGoogle Scholar
Mckinstrie, C.J. & Bingham, R. (1992). Stimulated Raman forward scattering and the relativistic modulational instability of light waves in rarefied plasma. Phys. Fluids B 4, 2626.CrossRefGoogle Scholar
Mendonc, J.T., Thide, B. & Then, H. (2009). Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum. Phys. Rev. Lett. 102, 185005.CrossRefGoogle Scholar
Minami, Y., Kurihara, T., Yamaguchi, K., Nakajima, M. & Suemoto, T. (2013). High-power THz wave generation in plasma induced by polarization adjusted two-color laser pulses. Appl. Phys. Lett. 102, 041105.CrossRefGoogle Scholar
Mishra, R.K. & Pallavi, J. (2011). Effect of chirping on the intensity profile and growth rate of modulation instability of a laser pulse propagating in plasma. Laser Part. Beams 29, 259263.CrossRefGoogle Scholar
Mishra, R.K. & Pallavi, J. (2013). Growth rate of modulation instability of a laser pulse propagating in clustered gas. Laser Part. Beams 31, 365369.CrossRefGoogle Scholar
Mori, W.B. (1997). The physics of the nonlinear optics of plasmas at relativistic intensities. IEEE J. Quantum Electron. 33, 19421953.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Novak, O., DivokY, M., Turcicova, H. & Straka, P. (2013). Design of a petawatt optical parametric chirped pulse amplification upgrade of the kilojoule iodine laser PALS. Laser Part. Beams 31, 211218.CrossRefGoogle Scholar
Paknezhad, A. & Dorranian, D. (2011). Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma. Laser Part. Beams 29, 373380.CrossRefGoogle Scholar
Paknezhad, A. & Dorranian, D. (2013). Third harmonic stimulated Raman backscattering of laser in a magnetized plasma. Phys. Plasmas 20, 092108.CrossRefGoogle Scholar
Panwar, A., Kumar, A. & Ryu, C.M. (2012). Stimulated Raman forward scattering of laser in a pre-formed plasma channel. Laser Part. Beams 30, 605611.CrossRefGoogle Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 264, 917924.CrossRefGoogle ScholarPubMed
Rao, N.N., Shukla, P.K. & Yu, M.Y. (1984). Strong electromagnetic pulses in magnetized plasmas. Phys. Fluids 27, 26642668.CrossRefGoogle Scholar
Rios, L.A. & Galvao, R.M.O. (2010). Self-modulation of linearly polarized electromagnetic waves in non-Maxwellian plasmas. Phys. Plasmas 17, 042116-1–042116-8.Google Scholar
Sepehri Javan, N. (2012). Modulation instability of an intense laser beam in the hot magnetized electron-positron plasma in the quasi-neutral limit. Phys. Plasmas 19, 122107-1–122107-7.CrossRefGoogle Scholar
Sepehri Javan, N. (2013). Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma. Phys. Plasmas 20, 012120012126.CrossRefGoogle Scholar
Sepehri Javan, N. (2014). Self-focusing of circularly polarized laser pulse propagating through a magnetized non-Maxwellian plasma. Phys. Plasmas 21, 103103/1–7.CrossRefGoogle Scholar
Sepehri Javan, N. & Adli, F. (2013 a). Relativistic nonlinear dynamics of an intense laser beam propagating in a hot electron-positron magnetoactive plasma. Phys. Plasmas 20, 062301.CrossRefGoogle Scholar
Sepehri Javan, N. & Adli, F. (2013 b). Polarization effect on the relativistic nonlinear dynamics of an intense laser beam propagating in a hot magnetoactive plasma. Phys. Rev. E 88, 043102.CrossRefGoogle Scholar
Sepehri Javan, N. & Nasirzadeh, ZH. (2012). Self-focusing of circularly polarized laser pulse in the hot magnetized plasma in the quasi-neutral limit. Phys. Plasmas 19, 112304112310.CrossRefGoogle Scholar
Shalabi, B. & Al-Khateeb, A. (2001). Brillouin backscattering instability in inhomogeneous collisional plasma. Laser Part. Beams 19, 223229.CrossRefGoogle Scholar
Shukla, P.K. & Bharuthram, R. (1987). Modulational instability of strong electromagnetic waves in plasmas. Phys. Rev. A 35, 48894891.CrossRefGoogle ScholarPubMed
Shukla, P.K., Marklund, M. & Eliasson, B. (2004). Nonlinear dynamics of intense laser pulses in a pair plasma. Phys. Lett. A 324, 193197.CrossRefGoogle Scholar
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. (1986). Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1149.CrossRefGoogle Scholar
Singh, V. (2013). Modulation instability of two laser beams in plasma. Laser Part. Beams 31, 753758.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Hafizi, B. (1997). Intense laser pulse propagation and stability in partially stripped plasmas. Phys. Rev. Lett. 79, 10461049.CrossRefGoogle Scholar
Steinberg, J.T., Gosling, J.T., Skoug, R.M. & Wiens, R.C. (2005). Suprathermal electrons in high-speed streams from coronal holes: Counterstreaming on open field lines at 1 AU. J. Geophys. Res. 110, A06103.CrossRefGoogle Scholar
Vasyliunas, V.M. (1968). A survey of low energy electrons in the evening sector of magnetosphere with Ogo 1 and Ogo 3. J. Geophys. Res. 73, 28392884.CrossRefGoogle Scholar
Zakharov, V.E. & Ostrovsky, L.A. (2009). Modulation instability: The beginning. Physica D 238, 540548.CrossRefGoogle Scholar