Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:18:34.758Z Has data issue: false hasContentIssue false

Diagnostic potential of advanced X-ray spectroscopy for investigation of hot dense plasmas

Published online by Cambridge University Press:  01 March 2004

O. RENNER
Affiliation:
Institute of Physics, Academy of Sciences CR, Prague, Czech Republic Institute of Optics and Quantum Electronics, Friedrich Schiller University, Jena, Germany
I. USCHMANN
Affiliation:
Institute of Optics and Quantum Electronics, Friedrich Schiller University, Jena, Germany
E. FÖRSTER
Affiliation:
Institute of Optics and Quantum Electronics, Friedrich Schiller University, Jena, Germany

Abstract

Modern experimental methods and instruments for X-ray spectral investigation of hot dense plasma provide complex information on environmental conditions in extreme states of matter. The basic spectroscopic conceptions for K-shell plasma diagnosis are outlined, the main characteristics of toroidally bent crystal spectrometers and vertical-dispersion instruments are briefly reviewed. Selected applications (monitoring and optimization of the emission from the femtosecond-laser-produced plasmas, characterization of colliding laser-exploded foils, spectral line merging, and continuum lowering in constrained-flow plasmas) demonstrate the usefulness of advanced spectroscopic methods for plasma diagnostics and fundamental research.

Type
International Conference on the Frontiers of Plasma Physics and Technology
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press.CrossRef
Hauer, A., Delamater, N.D. & Koenig, Z.M. (1991). High-resolution X-ray spectroscopic diagnostics of laser-heated and ICF plasmas. Laser Part. Beams 9, 348.CrossRefGoogle Scholar
Lee, R.W. & Larsen, J.T. (1996). A time dependent model for plasma spectroscopy of K-shell emitters. J. Quant. Spectrosc. Radiat. Transfer 56, 535556.CrossRefGoogle Scholar
Missalla, T., Uschmann, I., Förster, E., Jenke, G. & von der Linde, D. (1999). Monochromatic focusing of subpicosecond X-ray pulses in the keV range. Rev. Sci. Instrum. 6812881299.
Podorov, S.G., Renner, O., Wehrhan, O. & Förster, E. (2001). Optimized polychromatic X-ray imaging with asymmetrically cut bent crystals. J. Phys. D: Appl. Phys. 34, 23632368.CrossRefGoogle Scholar
Rancu, O., Renaudin, P., Chenais-Popovics, C., Kawagoshi, H., Gauthier, J.-C., Dirksmöller M., Missalla, T., Uschmann, I., Förster, E., Renner, O., Krousky, E., Pepin, H., &Shepard, T. (1995). Experimental evidence of interpenetration and high ion temperature in colliding plasmas. Phys. Rev. Lett. 75, 38543857.CrossRefGoogle Scholar
Renner, O., Missalla, T., Sondhauss, P., Krousky, E., Förster, E., Chenais-Popovics, C. & Rancu, O. (1997). High luminosity, high resolution x-ray spectroscopy of laser produced plasma by vertical geometry Johann spectrometer. Rev. Sci. Instrum. 68, 23932403.CrossRefGoogle Scholar
Renner, O., Patel, P.K., Wark, J.S., Krousky, E., Young, P.E. & Lee, R.W. (1999a). Vertical variant of a double channel-cut crystal spectrometer for investigation of laser-generated plasma. Rev. Sci. Instrum. 70, 30253031.Google Scholar
Renner, O., Sondhauss, P., Peyrusse, O., Krousky, E., Ramis, R., Eidmann, K. & Förster, E. (1999b). High-resolution measurements of x-ray emission from dense quasi-1D plasma: Line merging and profile modification. Laser Part. Beams 17, 365375.Google Scholar
Uschmann, I., Gibbon, P., Klöpfel, D., Feurer, T., Förster, E., Audebert, P., Geindre, J.-P., Gauthier, J.-C., Rousse, A. & Rischel, C. (1999). X-ray emission produced by hot electrons from fs-laser produced plasma—diagnostic and application. Laser Part. Beams 17, 671680.Google Scholar