Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T07:32:51.740Z Has data issue: false hasContentIssue false

Design criteria and validation of a vacuum load current multiplier on a mega-ampere microsecond inductive storage generator

Published online by Cambridge University Press:  11 June 2010

A.S. Chuvatin*
Affiliation:
Laboratoire de Physique des Plasmas, UMR7648, Ecole Polytechnique, Palaiseau, France
A.A. Kim
Affiliation:
High Current Electronics Institute, Tomsk, Russia
V.A. Kokshenev
Affiliation:
High Current Electronics Institute, Tomsk, Russia
B.M. Kovalchuk
Affiliation:
High Current Electronics Institute, Tomsk, Russia
F. Lassalle
Affiliation:
Centre d'Etudes de Gramat, Gramat, France
H. Calamy
Affiliation:
Centre d'Etudes de Gramat, Gramat, France
M. Krishnan
Affiliation:
Alameda Applied Science Corporation, San Leandro, California
*
Address correspondence and reprint requests to: Alexandre Chuvatin, Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau, France. E-mail: [email protected]

Abstract

The load current multiplier concept (LCM) was suggested for improving the energy transfer efficiency from pulse power generators to loads. The concept was initially demonstrated at atmospheric pressure and dielectric insulation on a compact, 100 kA, microsecond capacitor bank. This paper reports on the LCM design criteria for mega-ampere vacuum pulse power when the LCM comprises a large-inductance magnetic flux extruder cavity without a magnetic core. The analytical and numerical design approach presented was experimentally validated on GIT12 mega-ampere inductive energy storage generator with a constant-inductance load. The LCM technique increased the peak load current from typically 4.6 MA at 1.87 µs on this generator, to 6.43 MA at 2.0 µs. The electromagnetic power into a ~10 nH load increased from 100 GW to 230 GW. This result is in good agreement with the presented numerical simulations and it corresponds to a 95% increase of the achievable magnetic pressure at 8 cm radius in the load. The compact, LCM hardware allows the GIT12 generator to operate more efficiently without modifying the stored energy or architecture. The demonstrated load power and energy increase using the LCM concept is of importance for further studies on power amplification in vacuum and high energy density physics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastrikov, A.N., Zherlitsyn, A.A., Kim, A.A., Kovalchuk, B.M., Loginov, S.V. & Yakovlev, V.P. (1999). Experiments on the GIT-4 with the load connected upstream of the plasma opening switch. Russ. Phys. J. 42, 10111015.CrossRefGoogle Scholar
Bastrikov, A.N., Zherlitsin, A.A., Kim, A.A., Kovalchuk, B.M., Loginov, S.V. & Yakovlev, V.P. (1999). Experiments on GIT4 with the Load Upstream from the POS. Proc. 12th IEEE Int. Pulsed Power Conf., pp. 11911194. Monterey, CA: IEEE.CrossRefGoogle Scholar
Chuvatin, A.S., Rudakov, L.I., Weber, B.V., Cadièrgues, R. & Bayol, F. (2005). Current multiplier to improve generator-to-load coupling for pulse-power generators. Rev. Sci. Instrum. 76, 063501-1/063501-5.CrossRefGoogle Scholar
Chuvatin, A.S., Kokshenev, V.A., Aranchuk, L.E., Huet, D., Kurmaev, N.E. & Fursov, F.I. (2006 a). An inductive scheme of power conditioning at mega-ampere currents. Laser Part. Beams 24, 395401.CrossRefGoogle Scholar
Chuvatin, A.S. (2006 b). Dynamic Current Multiplier. Proc. Fourteenth Symp. on High Current Electronics. Tomsk, Russia. 232235.Google Scholar
Kovalchuk, B.M., Kharlov, A.V., Zherlitsyn, A.A., Kumpjak, E.V., Tsoy, N.V., Vizir, V.A. & Smorudov, G.V. (2009). 40 GW linear transformer driver stage for pulse generators of mega-ampere range. Laser Part. Beams 27, 371378.CrossRefGoogle Scholar
Kovalchuk, B.M., Kokshenev, V.A., Kim, A.A., Kurmaev, N.E., Loginov, S.V. & Fursov, S.V. (1997). GIT16: State of project in 1995–1997. Proc. 11th IEEE Int. Pulsed Power Conf., pp. 715723. Baltimore, MD: IEEE.CrossRefGoogle Scholar
Labetsky, A.Yu., Chaikovsky, S.A., Fedunin, A.V., Fursov, F.I., Kokshenev, V.A., Kurmaev, N.E., Oreshkin, V.I., Rousskikh, A.G., Shishlov, A.V. & Zhidkova, N.A. (2006). Study of microsecond Z-pinch implosions with the help of magnetic probes. Russ. Phys. J. 11, 157160.Google Scholar
Lassalle, F., Roques, B., Mangeant, C., Loyen, A., Georges, A., Calamy, H., Cambonie, J.-F., Laspalles, S., Cadars, D., Rodriguez, G., Delchie, J.-M., Combes, P., Chanconie, T. & Saves, J. (2007). Status on the sphinx machine based on the microsecond LTD technology. Proc. Sixteenth IEEE Int. Pulsed Power Conf., pp. 217221. Albuquerque, NM: IEEE.Google Scholar
Matzen, M.K., Sweeney, M.A., Adams, R.G., Asay, J.R., Bailey, J.E., Bennett, G.R., Bliss, D.E., Bloomquist, D.D., Brunner, T.A., Campbell, R.B., Chandler, G.A., Coverdale, C.A., Cuneo, M.E., Davis, J.-P., Deeney, C., Desjarlais, M.P., Donovan, G.L., Garasi, C.J., Haill, T.A., Hall, C.A., Hanson, D.L., Hurst, M.J., Jones, B., Knudson, M.D., Leeper, R.J., Lemke, R.W., Mazarakis, M.G., McDaniel, D.H., Mehlhorn, T.A., Nash, T.J., Olson, C.L., Porter, J.L., Rambo, P.K., Rosenthal, S.E., Rochau, G.A., Ruggles, L.E., Ruiz, C.L., Sanford, T.W.L., Seamen, J.F., Sinars, D.B., Slutz, S.A., Smith, I.C., Struve, K.W., Stygar, W.A., Vesey, R.A., Weinbrecht, E.A., Wenger, D.F. & Yu, E.P. (2005). Pulsed-power-driven high energy density physics and inertial confinement fusion research. Phys. Plasmas 12, 055503-1/055503-16.CrossRefGoogle Scholar
Mesyats, G.A. (2005). Pulsed Power. New York: Kluwer Academic.Google Scholar
Miller, R.B. (1982). An Introduction to the Physics of Intense Charged Particle Beams. New York: Plenum Press.CrossRefGoogle Scholar