Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T02:44:25.845Z Has data issue: false hasContentIssue false

Comparison of sub-micro/nano structure formation on polished silicon surface irradiated by nanosecond laser beam in ambient air and distilled water

Published online by Cambridge University Press:  02 July 2013

Maliheh Sobhani
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran
Mohammad Hossein Mahdieh*
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran
*
Address correspondence and reprint requests to: Mohammad Hossein Mahdieh, Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran13114-16846. E-mail: [email protected]

Abstract

This paper compares sub-micro/nano structure formation on polished silicon surface irradiated by nanosecond laser pulses in ambient air and distilled water. Surface cluster density and optical reflectivity of silicon surface (at a typical wavelength of λ = 632 nm) were studied in terms of number of laser pulses and laser fluence. The surface density and optical reflectivity give information on clusters filling factor and clusters height respectively. The results show that the values of surface cluster density and clusters height strongly depend on laser pulse numbers and interacting ambient. Comparing to air, distilled water as an interacting ambient can affect more significantly the clusters height.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bäuerle, D. (2011). Laser Processing and Chemistry. Heidelberg: Springer.CrossRefGoogle Scholar
Brown, M.S. & Arnold, C.B. (2010). Fundamentals of laser-material interaction and application to multiscale surface modification. In Laser Precision Fabrication (Sugioka, K. et al. , Eds.), Chapter 4, pp. 91120. Heidelberg: Springer.CrossRefGoogle Scholar
Carey, J.E. (2004). Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices. Ph.D. dissertation. Cambridge: Harvard University.Google Scholar
Chen, Y. & Vertes, A. (2006). Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Anal. Chem. 78, 58355844.CrossRefGoogle ScholarPubMed
Crouch, C.H., Carey, J.E., Shen, M., Mazur, E. & Génin, F.Y. (2004). Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl. Phys. A 79, 16351641.CrossRefGoogle Scholar
Crouch, C.H., Carey, J.E., Warrender, J.M., Aziz, M.J., Mazur, E. & Génin, F.Y. (2004). Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl. Phys. Lett. 84, 18501852.CrossRefGoogle Scholar
Dobrzański, L.A., Drygała, A., Panek, P., Lipiński, M. & Zięba, P. (2007). Application of laser in multicrystalline silicon surface processing. J. Achiev. Mater. Manuf. Eng. 24, 179182.Google Scholar
Dobrzański, L.A. & Drygała, A. (2008). Surface texturing of multicrystalline silicon solar cells. J. Achiev. Mater. Manuf. Eng. 31, 7782.Google Scholar
Dolgaev, S.I., Fernández-Pradas, J.M., Morenza, J.L., Serra, P. & Shafeev, G.A. (2006). Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation. Appl. Phys. A 83, 417420.CrossRefGoogle Scholar
Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., Ezersky, V. & Eliezer, D. (2005). Nanoparticles and nanotubes induced by femtosecond lasers. Laser Part. Beams 23, 1519.CrossRefGoogle Scholar
Fath, P., Marckmann, C., Bucher, E. & Willeke, G. (1995). Multicrystalline silicon solar cells using a new high throughput mechanical texturization technology and a roller printing metallization technique. Proc. 13th Conf of European Photovoltaic Solar Energy, pp. 29–32. Nice, France.Google Scholar
Finne, R.M. & Klein, D.L. (1967). A water-amine-complexing agent system for etching silicon. J. Electrochem. Soc. 114, 965970.CrossRefGoogle Scholar
Fu, G.S., Wang, Y.L., Chu, L.z., Zhou, Y., Yu, W., Han, L. & Peng, Y.C. (2005). The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas. Europhys. Lett. 69, 758762.CrossRefGoogle Scholar
Huang, Z., Carey, J.E., Liu, M., Guo, X., Mazur, E. & Campbell, J.C. (2006). Microstructured silicon photodetector. Appl. Phys. Lett. 89, 033506.Google Scholar
Iyengar, V.V., Nayak, B.K. & Gupta, M.C. (2010). Optical properties of silicon light trapping structures for photovoltaics. Sol. Energy Mater. Sol. Cells 94, 22512257.CrossRefGoogle Scholar
Iyengar, V.V., Nayak, B.K., More, K.L., Meyer, H.M., Biegalski, M.D., Li, J.V. & Gupta, M.C. (2011). Properties of ultrafast laser textured silicon for photovoltaics. Sol. Energy Mater. Sol. Cells 95, 27452751.CrossRefGoogle Scholar
Jiménez-Jarquín, J., Fernández-Guasti, M., Haro-Poniatowski, E. & Hernández-Pozos, J.L. (2005). IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere. Phys. Status Solidi (c) 2, 37983801.CrossRefGoogle Scholar
Kang, M.H., Ryu, K., Upadhyaya, A. & Rohatgi, A. (2011). Optimization of SiN AR coating for Si solar cells and modules through quantitative assessment of optical and efficiency loss mechanism. Prog. Photovolt: Res. Appl. 19, 983990.CrossRefGoogle Scholar
Kazakevich, P.V., Simakin, A.V. & Shafeev, G.A. (2006). Formation of periodic structures by laser ablation of metals in liquids. Appl. Surf. Sci. 252, 44574461.CrossRefGoogle Scholar
Kolacek, K., Straus, J., Schmidt, J., Frolov, O., Prukner, V., Shukurov, A.Holy, V., Sobota, J. & Fort, T. (2012) Nano-structuring of solid surface by extreme ultraviolet Ar8+ laser. Laser Part. Beams 30, 5763.CrossRefGoogle Scholar
Latif, A., Anwar, M.S., Aleem, M.A., Rafique, M.S. & Khaleeq-Ur-Rahman, M. (2009). Influence of number of laser shots on laser induced microstructures on Ag and Cu targets. Laser Part. Beams 27, 129136.CrossRefGoogle Scholar
Liu, S., Zhu, J., Liu, Y. & Zhao, L. (2008). Laser induced plasma in the formation of surface-microstructured silicon. Mater. Lett. 62, 38813883.CrossRefGoogle Scholar
Lowndes, D.H., Fowlkes, J.D. & Pedraza, A.J. (2000). Early stages of pulsed- laser growth of silicon microcolumns and microcones in air and SF6. Appl. Surf. Sci. 154–155, 647658.CrossRefGoogle Scholar
Lugomer, S., Maksimović, A., Karacs, A. & Peto, G. (2011). Spontaneous evolution of nanotips on silicon surface below the laser ablation threshold. Appl. Surf. Sci. 257, 78517855.CrossRefGoogle Scholar
Mahdieh, M.H. & Sobhani, M. (2012). Experimental study of nano-structure and optical properties of polished silicon irradiated by nanosecond Nd:YAG laser beam. J. Instrum. 7, C01076.CrossRefGoogle Scholar
Mansour, N., Jamshidi-Ghaleh, K. & Ashkenasi, D. (2006). Formation of conical microstructures of silicon with picoseconds laser pulses in air. J. Laser Micro/Nanoeng. 1, 1216.CrossRefGoogle Scholar
Menéndez-Manjón, A., Barcikowski, S., Shafeev, G.A., Mazhukin, V.I. & Chichkov, B.N. (2010). Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation. Laser Part. Beams 28, 4552.CrossRefGoogle Scholar
Ming, Z., Gang, Y., Jing-Tao, Z. & Li, Z. (2003). Picosecond pulse laser microstructuring of silicon. Chin. Phys. Lett. 20, 17891791.CrossRefGoogle Scholar
Nakaya, H., Nishida, M., Takeda, Y., Moriuchi, S., Tonegawa, T., Machida, T. & Nunoi, T. (1994). Polycrystalline silicon solar cells with V-grooved surface. Sol. Energy Mater. Sol. Cells 34, 219225.CrossRefGoogle Scholar
Nijs, J.F., Szlufcik, J., Poortmans, J., Sivoththaman, S. & Mertens, R.P. (2001). Advanced cost-effective crystalline silicon solar cell technologies. Sol. Energy Mater. Sol. Cells 65, 249259.CrossRefGoogle Scholar
Panek, P., Lipiński, M. & Dutkiewicz, J. (2005). Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells. J. Mater. Sci. 40, 14591463.CrossRefGoogle Scholar
Pedraza, A.J., Fowlkes, J.D. & Guan, Y.F. (2003). Surface nanostructuring of silicon. Appl. Phys. A 77, 277284.CrossRefGoogle Scholar
Pedraza, A.J., Fowlkes, J.D., Jesse, S., Mao, C. & Lowndes, D.H. (2000). Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres. Appl. Surf. Sci. 168, 251257.CrossRefGoogle Scholar
Reinhardt, C., Passinger, S., Zorba, V., Chichkov, B.N., Fotakis, C. (2007). Replica modeling of picosecond laser fabricated Si microstructures. Appl. Phys. A 87, 673677.CrossRefGoogle Scholar
Riedel, D., Hernandez-Pozos, J.L., Palmer, R.E. & Kolasinski, K.W. (2004). Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6. Appl. Phys. A 78, 381385.CrossRefGoogle Scholar
Schropp, R.E.I. & Zeman, M. (1998). Amorphous And Microcrystalline Silicon Solar Cells: Modeling, Materials And Device Technology. Netherlands: Kluwer Academic.CrossRefGoogle Scholar
Serpengüzel, A., Kurt, A., Inanç, I., Cary, J.E. & Mazur, E. (2008). Luminescence of black silicon. J. Nanophoton. 2, 021770.CrossRefGoogle Scholar
Shen, M.Y., Crouch, C.H., Carey, J.E. & Mazur, E. (2004). Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl. Phys. Lett. 85, 56945696.CrossRefGoogle Scholar
Shen, M.Y., Crouch, C.H., Carey, J.E., Younkin, R. & Mazur, E. (2003). Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask. Appl. Phys. Lett. 82, 17151717.CrossRefGoogle Scholar
Sher, M.J., Winkler, M.T. & Mazur, E. (2011). Pulsed-laser hyperdoping and Surface texturing for photovoltaics. MRS Bull. 36, 439445.CrossRefGoogle Scholar
Singh, P.K., Kumar, R., Lal, M., Singh, S.N. & Das, B.K. (2001). Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 70, 103113.CrossRefGoogle Scholar
Sze, S.M. & Ng, K.K. (2006). Physics of Semiconductor Devices. Hoboken: John Willey & Sons.CrossRefGoogle Scholar
Szlufcik, J., Leuven, I., Sivoththaman, S., Nlis, J.F., Mertens, R.P. & Van Overstraeten, R. (1997). Low-cost industrial technologies of crystalline silicon solar cells. Proc. IEEE 85, 711730.CrossRefGoogle Scholar
Trtica, M., Batani, D., Redaelli, R., Limpouch, J., Kmetik, V., Ciganovic, J., Stasic, J., Gakovic, B. & Momcilovic, M. (2012). Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum. Laser Part. Beams 30, 18.Google Scholar
Trtica, M.S., Radak, B.B., Gakovic, B.M., Milovanovic, D.S., Batani, D. & Desai, T. (2009). Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser. Laser Part. Beams 27, 8590.CrossRefGoogle Scholar
Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P. & Yalisove, S.M. (2006). Silicon surface morphologies after femtosecond laser irradiation. MRS Bull. 31, 626633.CrossRefGoogle Scholar
Wang, Y.L., Xu, W., Zhou, Y., Chu, L.Z. & Fu, G.S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Yonekubo, H., Katayama, K. & Sawada, T. (2005). Formation of a ripple pattern at a water/silicon interface using an oscillating bubble. Appl. Phys. A 81, 843846.CrossRefGoogle Scholar
Younkin, R., Carey, J.E., Mazur, E., Levinson, J.A. & Friend, C.M. (2003). Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond laser pulses. J. Appl. Phys. 93, 26262629.CrossRefGoogle Scholar
Zhao, J. & Wang, A. (2006). Rear emitter n-type passivated emitter, rear totally diffused silicon solar cell Structure. Appl. Phys. Lett. 88, 242102242104.CrossRefGoogle Scholar