Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T04:12:49.210Z Has data issue: false hasContentIssue false

Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks

Published online by Cambridge University Press:  23 March 2009

B. Malekynia
Affiliation:
Plasma Physics Research Centre, Science and Research Branch, Islamic Azad University IAU, Tehran-Poonak, Iran
M. Ghoranneviss
Affiliation:
Plasma Physics Research Centre, Science and Research Branch, Islamic Azad University IAU, Tehran-Poonak, Iran
H. Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
*
Address correspondence and reprint requests to: H. Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: [email protected]

Abstract

The anomaly at laser plasma interaction at laser pulses of TW to PW power and ps duration led to a very unique generation of quasi-neutral plasma blocks by a skin layer interaction avoiding the relativistic self-focusing. This is in contrast to numerous usual experiments. The plasma blocks have ion current densities above 1011 A/cm2 and may be used for a fast ignition scheme with comparably low compression of the deuterium tritium (DT) fuel. The difficulty is that a very high energy flux density E* of the ions is necessary according to the hydrodynamic theory (Bobin, 1971, 1974; Chu, 1972). This theory did not include the later discovered collective effect for the stopping power of the alpha particles. One problem is being discussed, whether the Bethe-Bloch binary collision theory or the collective collision theory of Gabor has to be applied. The inclusion of the collective effect results in a reduction of the threshold value of E* for ignition by a factor of about fife.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1995). Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microsphered. Jp. J. Appl. Phys. 34, 19801992.CrossRefGoogle Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M. & Yamanaka, M. (1991). High-Density Compression Experiments at ILE Osaka. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Azizi, N., Hora, H., Miley, G.H., Malekynia, B., Ghoranneviss, M. & He, X.T. (2009). Threshold for lasedr driven block ignition for fsuion energy. Laser Part. Beams 27, 201206.CrossRefGoogle Scholar
Badziak, J. (2007). Laser produced ion acceleration. Opto-Electr. Rev. 15, 111.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2004). Production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies of laser driven generation of fast-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Bagge, E. & Hora, H. (1974). Calculation of the reduced penetration depth of relativistic electrons in plasmas for nuclear fusion. Atomkernenergie 24, 143146.Google Scholar
Basko, M.M. (1990). Volume ignition. Nucl. Fusion 30, 24432449.CrossRefGoogle Scholar
Bobin, J.L. (1971). Flame propagation and overdense heating in a laser created plasma. Phys. Fluids 14, 2341.CrossRefGoogle Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. & Hora, H., Eds.). New York: Plenum Press.Google Scholar
Bret, A. & Deutsch, C. (2008). Correlated stopping power of a chain of n charges. J. Plasma Phys. 74, 595599.CrossRefGoogle Scholar
Broad, W.J. (1988). Secret advance in nuclear fusion spurs a dispute among scientists. New York Times 137, 451.Google Scholar
Campbell, E.M. (2005). High intensity laser-plasma interaction and applications to inertial fusion and high energy density physics. D.Sc. Thesis. Sydney: University of Western Sydney.Google Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, J. & Ullschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.CrossRefGoogle Scholar
Cowan, T.E., Parry, M.D, Key, M.H., Dittmire, T.R., Hatchett, S.P., Henry, E.A., Mody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C, Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kuhl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Deutsch, C. & Popoff, R. (2007). Low-velocity ion stopping in a dense and low-temperature plasma target. Nucl. Instr. & Meth. Phys. Res 577, 337342.CrossRefGoogle Scholar
Gabor, D. (1933). Elektrostatische theorie des plasmas. Zeitschrift F. Phys. 84, 474508.CrossRefGoogle Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 7286.Google Scholar
Gericke, D.O. (2002). Stopping power for strong beam-plasma coupling. Laser Part. Beams 20, 471474.CrossRefGoogle Scholar
Gericke, D.O., Schlanges, M. & Kraeft, W.D. (1997). T-matrix approximation of the stopping power. Laser Part. Beams 15, 523531.CrossRefGoogle Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y., Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1526.CrossRefGoogle Scholar
Hasegawa, J., Yokoya, J., Kobayashi, N., Yoshida, M., Kojima, M., Sasaki, T., Fukuda, H., Ogawa, M., Oguri, Y. & Murakami, T. (2003). Stopping power of dense helium plasma for fast heavy ions. Laser Part. Beams 21, 711.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosemej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagistris, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy-ions in plasmas. Nucl. Instr. & Meth. Phys. Res. 90, 19.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy losses of heavy ions in a plasma target. Phys. Rev. A 42, 23132317.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion by nonlinear forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser-plamsa interaction. Czech. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M., & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and svolume igntion for nif conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Y.-T., Liang, T.-J., Liu, H., Sheng, Z.-M., Zhang, J., Osman, F., Miley, G.H., Zhang, W., He Xianto, P., Hanscheng, G.S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven particle beams of very high intensity physics of plasmas. Phys. Plasmas 14, 072701–1072701–7.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghiranneviss, M., Miley, G.H. & He, X.T. (2008). Twenty times lower ignition threshold fo laser driven fusion using cllective effets and the inhibition factor. Appl. Phys. Lett. 93, 011101.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Osman, F., Evans, P., Toups, P., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Yamanaka, C. & Yamanaka, T. (2003). Single-event high-compression inertial confinement fusion at low temperatures compared with two-step fast ignitor. J. Plasma Phys. 69, 413429.CrossRefGoogle Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined dt plasma due to reheat. Z. F. Naturforschung A 33, 890894.CrossRefGoogle Scholar
Kerns, J.R., Rogers, C.W. & Clark, J.G. (1972). Penetration of terawatt electron beam in polyethyens. Bull. Am. Phys. Soc. 17, 692.Google Scholar
Kirkpatrick, R.C. & Wheeler, J.A. (1981). Volume ignition for inertial confinement fusion. Nucl. Fusion 21, 398404.Google Scholar
Lackner, K.S., Colgate, S.A., Johnson, N.L., Kirkpatrick, R.C., Menikoff, R. & Petschek, A.G. (1994). Equilibrium Ignition for ICF Capsules. In Laser Interaction and Related Plasma Phenomena. New York: American Institute of Physics.Google Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Lindl, J.D. (1994). The Edward Teller Lecture: The evolution toward indirect drive and two decades progress toward ignition and burn. In Laser Interaction and Related Plasma Phenomena. New York: American Institute of Physics.Google Scholar
Martinez-Val, J.-M., Eliezer, S. & Piera, M. (1994). Volume ignition for heavy-ion inertial fusion. Laser Part. Beams 12, 681717.CrossRefGoogle Scholar
Morawetz, K. & Röpke, G. (1996). Stopping power in nonideal and strongly coupled plasmas. Phys. Rev. E 54, 41344146.CrossRefGoogle ScholarPubMed
Morawetz, K. (1997). Stopping power in strongly coupled plasmas. Laser Part. Beams 15, 507521.CrossRefGoogle Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science And Applications 2001 (Tanaka, V.R., Meyerhofer, D.D. & Meyer-Ter-Vehn, J., Eds.). Paris: Elsevier.Google Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Nuckolls, J.H. & Wood, L. (2002). Future of Inertial Fusion Energy. Livermore, Ca: Lawrence Livermore National Laboratory.Google Scholar
Ogawa, M., Neuner, U., Kobayachi, H., Nakayama, Y., Nishigori, K., Takayaman, K., Iwase, O., Yoshida, M., Kojina, M., Hasegawa, J., Oguri, Y., Horioka, K., Nakajima, M., Miyamoto, S., Dubenkov, V. & Murakami, T. (2000). Measurement of stopping power of 240 MeV argon ions in partially ionized helium discharge plasma. Laser Part. Beams 18, 647653.CrossRefGoogle Scholar
Ozaki, T., Bom, L., Ganeev, R., Kieffer, J., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Ray, P.S. & Hora, H. (1977). On the thermalization of energetic charged particles in fusion plasma with quantum electrodynamic considerations. Z. F. Naturforschung 31, 538543.CrossRefGoogle Scholar
Ray, P.S. & Hora, H. (1976). On the range of alpha-particles in laser produced superdense fusion plasma. Nucl. Fusion 16, 535536.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Schäfer, H.P. (1986). On some properties of axicons. Appl. Phys. B 39, 18.CrossRefGoogle Scholar
Scheffel, C., Stening, R.J., Hora, H., Höpfl, R., Martinez-Val, J.-M., Eliezer, S., Kasotakis, G., Piera, M. & Sarris, E. (1997). Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition. Laser Part. Beams 15, 565574.CrossRefGoogle Scholar
Starikov, K.V. & Deutsch, C. (2007). Partial degeneracy effects in the stopping of relativistic electrons in supercompressed thermonuclear fuels. Phys. Plasmas 14, 022704.CrossRefGoogle Scholar
Stepanek, J. (1981). Charged particle loss rates and ranges. In Plasma. In Laser Interaction and Related Plasma Phenomena (Schwarz, H., Hora, H., Lubin, M. & Yaakobi, B., Eds.). New York: Plenum Press.Google Scholar
Szatmari, S. & Schäfer, F.P. (1988). Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 68, 196201.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tahir, N.A. (1986). Volume ignition. Phys. Fluids 29, 12821288.CrossRefGoogle Scholar
Tahir, N.A. (1994). Stopping power for volume ignition. Fusion Engin. Des. 24, 418425.Google Scholar
Tahir, N.A. & Long, K.A. (1983). Inertial nuclear fusion gains. Nucl. Fusion 23, 887893.CrossRefGoogle Scholar
Teller, E. (2005). Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora, H. & Miley, G.H., Eds.). London: Imperial College Press.Google Scholar
Varro, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold de broglie waves. Laser Part. Beams 26, 919.CrossRefGoogle Scholar
Varro, S. (2007). Linear and nonlinear absolute phase effects in interactions of ulrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.CrossRefGoogle Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F. (2009). Layers from initial Raleigh density profiles by directed nonloinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, L., Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.CrossRefGoogle Scholar
Zhang, Y.M., Tang, J.P., Huang, J.J., Qu, A.C., Guan, Z.C. & Wang, X.X. (2008). The application of flash-over switch in high energy fluence diode. Laser Part. Beams 26, 213216.CrossRefGoogle Scholar
Zhou, C.T., He, X.T. & Yu, M.Y. (2008). Laser-produced energetic transport in overdense plasmas by wire guiding. Appl. Phys. Lett. 92, 151502.CrossRefGoogle Scholar