Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T20:52:22.916Z Has data issue: false hasContentIssue false

Characterization of self-generated intense electron beams in a plasma focus

Published online by Cambridge University Press:  09 March 2009

P. Choi
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK
C. Deeney
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK
H. Herold
Affiliation:
Institut fur Plasmaforschung, Universitaet Stuttgart, D7000 Stuttgart 80, FRG

Abstract

The parameters of self-generated electron beams have been measured and correlated to the dynamics of a 60 kV, 28 kJ plasma focus. The electron beam emission occurs in two periods: the first corresponds to the initial formation and disruption of the pinched plasma and terminates with the disruption of the plasma column, and the second period occurs after the breaking up of the focus plasma. The first period is characterized by high-energy electron beams, whereas in the second period the electron beams have lower average energies but higher currents. A relativistic electron beam is found to occur around the time of first compression, when the plasma is observed to be macroscopically stable, in contrast to measurements obtained from machines with similar energies but operating at lower voltages. The plasma X-ray emission is observed to be closely related to the electron beam characteristics. Possible mechanisms for the formation of the electron beams observed are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berstein, M. J. 1970 Phys. Fl., 13, 2858.CrossRefGoogle Scholar
Bostick, W. H., Nardi, V., Prior, W. & Cortese, C. 1975 Proc. Third Topical Conf. on Pulsed High Beta Plasmas,Culham,U. K., D. E. Evans ed.Google Scholar
Choi, P. et al. 1987 Proc. 5th Int. Workshop on Plasma Focus and Z-pinch Research,Toledo,Spain p. 76.Google Scholar
Choi, P., Deeney, C. & Wong, C. S. 1988 Phys. Lett. A, 128, 80.CrossRefGoogle Scholar
Choi, P., Wong, C. S. & Herold, H. 1989 Laser & Part. Beams, 7, 763772.CrossRefGoogle Scholar
Gary, S. P. & Hohl, F. 1973 Phys. Fl., 16, 997.CrossRefGoogle Scholar
Gary, S. P. 1974 Phys. Fl., 17, 2135.CrossRefGoogle Scholar
Harris, W. L., Lee, J. H. & McFarland, D. R. 1978 Plasma Phys., 20, 95.CrossRefGoogle Scholar
Hohl, F. & Gary, S. P. 1977 Phys. Fl., 20, 683.CrossRefGoogle Scholar
Kondoh, Y. & Hirano, K. 1978 Phys. Fl., 21, 1617.CrossRefGoogle Scholar
Mather, J. W. 1965 Phys. Fl., 8, 366.CrossRefGoogle Scholar
Newman, C. & Petrosian, V. 1975 Phys. Fl., 18, 547.CrossRefGoogle Scholar
Oppenlander, T. 1981 Institut fur Plasmaforschung der Universitaet Stuttgart, Report IPF-81–2.Google Scholar
Smith, J. R., Luo, C. M., Rhee, M. J. & Schneider, R. F. 1985 Phys. Fl., 28, 2305.CrossRefGoogle Scholar
Stygar, W., Gerdin, G., Venneri, F. & Mandrekas, J. 1982 Nucl. Fusion, 22, 1161.CrossRefGoogle Scholar
Trubnikov, B. A. & Zhadonov, S. K. 1985 JETP Lett., 41, 359.Google Scholar
Trubnikov, B. A. 1986 Sov. J. Plasma Phys., 12, 490.Google Scholar
Yamamoto, T., Simoda, K. & Hirano, K. 1982 Jap. J. Appl. Phys., 24, 324.CrossRefGoogle Scholar