Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T05:31:07.020Z Has data issue: false hasContentIssue false

Approaching the “cold curve” in laser-driven shock wave experiment of a matter precompressed by a partially perforated diamond anvil

Published online by Cambridge University Press:  18 December 2012

N. Nissim*
Affiliation:
Applied Physics Department, Soreq NRC, Yavne, Israel
S. Eliezer
Affiliation:
Applied Physics Department, Soreq NRC, Yavne, Israel
M. Werdiger
Affiliation:
Applied Physics Department, Soreq NRC, Yavne, Israel
L. Perelmutter
Affiliation:
Applied Physics Department, Soreq NRC, Yavne, Israel
*
Address correspondence and reprint requests to: N. Nissim, Applied Physics Department, Soreq NRC, Yavne 81800, Israel. E-mail: [email protected]

Abstract

This paper suggests a novel route to approach the cold compression curve in laser-plasma induced shock waves. This effect is achieved with a precompression in a diamond anvil cell (DAC). In order to keep the necessary structure of one dimensional shock wave it is required to use a diamond anvil cell with a partially perforated diamond anvil. Precompression pressures of about 50 GPa, that are an order of magnitude higher than the currently reported pressures, are possible to obtain with presentley existing diamond anvil cell technology. The precompressed Hugoniot of Al was calculated for different precompression pressures and it was found that at precompression pressure of 50 GPa the Hugoniot follows the “cold curve” up to about 2 Mbar and 5.2 g/cc. Furthermore, the thermal relative contribution on the Hugoniot curves is calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakshi, L., Eliezer, S., Henis, Z., Nissim, N., Perelmutter, L., Moreno, D., Sudai, M. & Mond, M. (2009). Equations of state and the ellipsometry diagnostics. Laser Part. Beams, 27, 7984.CrossRefGoogle Scholar
Bassett, W.A., Anderson, A.J., Mayanovic, R.A. & Chou, I.-M. (2000). Hydrothermal diamond anvil cell for xafs studies of first-row transition elements in aqueous solution up to supercritical conditions. Chem. Geol. 167, 310.CrossRefGoogle Scholar
Dadashev, A., Pasternak, M.P., Rozenberg, G.K. & Taylor, R.D. (2001). Applications of perforated diamond anvils for very high-pressure research. Rev. Sci. Inst. 72, 26332637.CrossRefGoogle Scholar
Dewaele, A., Loubeyre, P. & Mezouar, M. (2004). Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112.CrossRefGoogle Scholar
Drake, R.P. (2010). High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Shock Wave and High Pressure Phenomena). New York: Springer.Google Scholar
Eggert, J., Brygoo, S., Loubeyre, P., McWilliams, R.S., Celliers, P.M., Hicks, D.G., Boehly, T.R., Jeanloz, R. & Collins, G.W. (2008). Hugoniot data for helium in the ionization regime. Phys. Rev. Lett. 100, 124503.CrossRefGoogle ScholarPubMed
Eliezer, S. (2001). Interaction of High Power Lasers with Plasmas (Series in Plasma Physics). New York: Taylor & Francis.Google Scholar
Eliezer, S., Ghatak, A.K. & Hora, H. (2002). Fundamentals of Equations of State. Singapore: World Scientific Pub Co Inc.CrossRefGoogle Scholar
Errandonea, D. (2006). Phase behavior of metals at very high pt conditions: A review of recent experimental studies. J. Phys. Chem. Solids 67, 20172026.CrossRefGoogle Scholar
Evans, A., Freeman, N., Graham, P., Horsfield, C., Rothman, S., Thomas, B. & Tyrrell, A. (1996). Hugoniot eos measurements at mbar pressures. Laser Part. Beams 14, 113123.CrossRefGoogle Scholar
Fortov, V. & Lomonosov, I. (2010). Equations of state of matter at high energy densities. Open Plasma Phys. J. 3, 122.CrossRefGoogle Scholar
Hemley, R.J. (2010). Percy w. bridgman's second century. High Pressure Res. 30, 581619.CrossRefGoogle Scholar
Hemley, R.J. & Ashcroft, N.W. (1998). The revealing role of pressure in the condensed matter sciences. Phys. Today 51, 2632.CrossRefGoogle Scholar
Henry, E., Brygoo, S., Loubeyre, P., Koenig, M., Benuzzi-Mounaix, A., Ravasio, A. & Vinci, T. (2006). Laser-driven shocks in precompressed water samples. J. Phys. IV France 133, 10931095.CrossRefGoogle Scholar
Jeanloz, R., Celliers, P.M., Collins, G.W., Eggert, J.H., Lee, K.K.M., McWilliams, R.S., Brygoo, S. & Loubeyre, P. (2007). Achieving high-density states through shock-wave loading of precompressed samples. PNAS 104, 91729177.CrossRefGoogle ScholarPubMed
Kimura, T., Ozaki, N., Okuchi, T., Terai, T., Sano, T., Shimizu, K., Sano, T., Koenig, M., Hirose, A., Kakeshita, T., Sakawa, Y. & Kodama, R. (2010). Significant static pressure increase in a precompression cell target for laser-driven advanced dynamic compression experiments. Phys. Plasmas 17, 054502.CrossRefGoogle Scholar
Lee, K.K.M., Benedetti, L.R., Mackinnon, A., Hicks, D., Moon, S.J., Loubeyre, P., Occelli, F., Dewaele, A., Collins, G.W. & Jeanloz, R. (2002). Taking thin diamonds to their limit: Coupling static-compression & laser-shock techniques to generate dense water. AIP Conf. Proc. 620, 13631366.CrossRefGoogle Scholar
Lomonosov, I. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.CrossRefGoogle Scholar
Loubeyre, P., Celliers, P.M., Hicks, D.G., Henry, E., Dewaele, A., Pasley, J., Eggert, J., Koenig, M., Occelli, F., Lee, K.M., Jeanloz, R., Neely, D., Benuzzi-Mounaix, A., Bradley, D., Bastea, M., Moon, S. & Collins, G.W. (2004). Coupling static and dynamic compressions: first measurements in dense hydrogen. High Pressure Res. 24, 2531.CrossRefGoogle Scholar
Militzer, B. & Hubbard, W.B. (2007). Implications of shock wave experiments with precompressed materials for giant planet interiors. AIP Conf. Proc. 955, 13951398.Google Scholar
Mitchell, A.C. & Nellis, W.J. (1981). Shock compression of aluminum, copper, and tantalum. J. App. Phys., 52, 33633374.CrossRefGoogle Scholar
Mitchell, A.C., Nellis, W.J., Moriarty, J.A., Heinle, R.A., Holmes, N.C., Tipton, R.E. & Repp, G.W. (1991). Equation of state of al, cu, mo, and pb at shock pressures up to 2.4 tpa (24 mbar). J. Appl. Phys. 69, 2981.CrossRefGoogle Scholar
Nagao, H., Nakamura, K.G., Kondo, K., Ozaki, N., Takamatsu, K., Ono, T., Shiota, T., Ichinose, D., Tanaka, K.A., Wakabayashi, K., Okada, K., Yoshida, M., Nakai, M., Nagai, K., Shigemori, K., Sakaiya, T. & Otani, K. (2006). Hugoniot measurement of diamond under laser shock compression up to 2 tpa. Phys. Plasmas 13, 052705.CrossRefGoogle Scholar
Neff, S. & Presura, R. (2010). Simulation of shock waves in flyer plate impact experiments. Laser Part. Beams 28, 539545.CrossRefGoogle Scholar
Nellis, W.J., Mitchell, A.C. & Young, D.A. (2003). Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80–440 gpa (0.8–4.4 mbar). J. App. Phys. 93, 304310.CrossRefGoogle Scholar
Pickard, C.J. & Needs, R.J. (2010). Aluminium at terapascal pressures. Nat. Mater. 9, 624.CrossRefGoogle ScholarPubMed
Popov, M. (2010). Stress-induced phase transitions in diamond. High Pressure Res. 30, 670678.CrossRefGoogle Scholar
Soignard, E., Benmore, C.J. & Yarger, J.L. (2010). A perforated diamond anvil cell for high-energy X-ray diffraction of liquids and amorphous solids at high pressure. Rev. Sci. Inst., 81, 035110.CrossRefGoogle ScholarPubMed
Zel'dovich, Y.B. & Raizer, Y.P. (2002). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications.Google Scholar