Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:29:02.815Z Has data issue: false hasContentIssue false

Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

Published online by Cambridge University Press:  09 March 2009

Robert A. Smith
Affiliation:
Plasma Physics Division, Science Applications International Corp., 1710 Goodridge Drive, McLean, VA 22102.

Abstract

The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrosatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alport, M. J., Cartier, S. L. & Merlino, R. L. 1986 J. Geophys. Res. 91, 1599.CrossRefGoogle Scholar
Benson, R. F. & Calvert, W. 1979 Geophys. Res. Lett. 6, 479.CrossRefGoogle Scholar
Boehm, M. H. & Mozer, F. S. 1981 Geophys. Res. Lett. 8, 607.CrossRefGoogle Scholar
Bruning, K. 1983 Dissertation, Univ. of Munser.Google Scholar
Burke, W. J. 1984: in Magnetospheric Currents (Potemra, T. A. ed.), Amer. Geophys. Union, Washington, pp. 294303.CrossRefGoogle Scholar
Coakley, P. & Hershkowitz, N. 1979 Phys. Fluids, 22, 1171.CrossRefGoogle Scholar
Davidson, R. C. & Krall, N. A. 1977 Nuclear Fusion, 17, 1313.CrossRefGoogle Scholar
Goertz, C. K. 1985a Space Sci. Rev. 42, 499.CrossRefGoogle Scholar
Goertz, C. K. 1985b. (to be published: Proc. Colloq. on Comparative Study of Magnetospheric Systems,LaLonde-les-Maures,France).Google Scholar
Goertz, C. K. & Joyce, G. 1975 Astrophys. Space Sci. 32, 165.CrossRefGoogle Scholar
Gurnett, D. A. 1974 J. Geophys. Res. 79, 4227.CrossRefGoogle Scholar
Haerendel, G. 1983: (Hultqvist, B. and Hagfors, T. eds.), Plenum, New York, pp. 515535.Google Scholar
Kletzing, C., Cattell, C., Mozer, F. S., Akasofu, S.-I. & Makita, K. 1983 J. Geophys. Res. 88, 4105.CrossRefGoogle Scholar
McBride, J. B., Ott, E., Boris, J. P. & Orens, J. H. 1972 Phys. Fluids, 15, 2367.CrossRefGoogle Scholar
Smith, R. A. 1985a: in Unstable Current Systems and Plasma Instabilities in Astrophysics (Kundu, M. R. and Holman, G. D. eds.), Reidel, Dordrecht, pp. 113123.CrossRefGoogle Scholar
Smith, R. A. 1985b Proc. Colloq. on Comparative Study of Magnetospheric Systems,La Londe-les-Maures,France.Google Scholar
Smith, R. A. 1986 submitted to Geophys. Res. Lett. (Paper I).Google Scholar
Smith, R. A. 1982a Physica Scripta, 25, 413.CrossRefGoogle Scholar
Smith, R. A. 1982b Physica Scripta, T2, 238.CrossRefGoogle Scholar
Smith, R. A. 1986b submitted to Geophys. Res. Lett. (Paper II).Google Scholar
Temerin, M., Cerny, K., Lotko, W. & Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
Torbert, R. B. & Mozer, F. S. 1978 Geophys. Res. Lett. 5, 135.CrossRefGoogle Scholar