Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T05:55:46.023Z Has data issue: false hasContentIssue false

10-ps pulsation of laser plasma explained hydrodynamically by self-generated Bragg ripples and their decay and avoidance by smoothing

Published online by Cambridge University Press:  09 March 2009

M. Aydin
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
Gu Min
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia

Abstract

The many years' of difficulty with laser fusion owing to the complexity of the interaction with the plasma has been clarified experimentally from the 10-ps pulsation of the interaction. The theoretical understanding of this pulsation is presented here from a hydrodynamic simulation of the interaction in which the generation of partial standing waves and the subsequent nonlinear-force-produced density ripple produces ideal Bragg reflection in the outermost part of the plasma. This all decays within about 10 ps hydrodynamically. The theory explains immediately why the 2-ps coherence at induced spatial incoherence avoids the pulsation and arrives at a smooth interaction similar to the random-phase plate or the use of broad-band laser spectrum irradiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aydin, M. & Hora, H. 1990 Bull. Am. Phys. Soc. 35, 2021.Google Scholar
Ximing, Deng & Wenyan, Yu 1984 In Advances in Inertial Confinement Fusion, IAEA 1983 Committee Proceedings, Yamanaka, C. ed. (ILE, Osaka), p. 66.Google Scholar
Drake, R. P. 1988 Laser Part. Beams 6, 235.Google Scholar
Eidmann, K. & Sigel, R. 1974 In Laser Interaction and Related Plasma Phenomena, Schwarz, H. & Hora, H. ed. (Plenum, New York), Vol. 3B, p. 667.Google Scholar
Etiezer, S. & Hora, H. 1989 Phys. Rep. 172, 339.CrossRefGoogle Scholar
Giuuetti, A. et al. 1989 In Laser Interaction with Plasmas, Velarde, G., Minguez, E. & Perlado, J. M. eds. (World Scientific, Singapore), p. 208.Google Scholar
Goldsworthy, M. P., Hora, H. & Stening, R. J. 1990 Laser Part. Beams 8, 33.Google Scholar
Min, Gu & Hora, H. 1989 J. Chin. Lasers 16, 656.Google Scholar
Min, Gu et al. 1988 Opt. Commun. 66, 35.Google Scholar
Hora, H. 1969 Phys. Fluids 12, 182.CrossRefGoogle Scholar
Hora, H. 1975 Laser Plasmas and Nuclear Energy (Plenum, New York).CrossRefGoogle Scholar
Hora, H. & Min, Gu 1990 Laser Part. Beams 9, xxx.Google Scholar
Hora, H., Laiousis, P. & Eliezer, S. 1984 Phys. Rev. Lett. 53, 1650.CrossRefGoogle Scholar
Joshi, C. et al. 1981 Phys. Rev. Lett. 47, 1285.Google Scholar
Kato, Y. et al. 1984 Phys. Rev. Lett. 53, 1057.Google Scholar
Labaune, C. et al. 1985 Phys. Rev. A 32, 577.Google Scholar
Lehmberg, R. H. & Obenschain, S. P. 1983 Opt. Commun. 46, 27.CrossRefGoogle Scholar
Zungui, Lin et al. 1986 Laser Part. Beams 4, 223.Google Scholar
Lindl, J. & Kaw, P. 1971 Phys. Fluids 14, 371.Google Scholar
Lubin, M. J. et al. 1974 ECLIM '74 Garching Conference Abstracts, p. 34.Google Scholar
Luther-Davies, B., Perry, A. J. & Nugent, K. A. 1987 Phys. Rev. A 35, 4306.Google Scholar
Maddever, R. A. M. 1988 Ph.D. thesis, Australian National University, Canberra.Google Scholar
Maddever, R. A. M., Luther-Davies, B. & Dragila, R. 1990 Phys. Rev. A 41, 2154.Google Scholar
McCrory, R. L. et al. 1990 Laser Part. Beams 8, 27.Google Scholar
Mulser, P. 1970 Z. Naturforsch. 25A 282.Google Scholar
Obenschain, S. P. et al. 1986 Phys. Rev. Lett. 56, 2807.Google Scholar
Obenschain, S. P. et al. 1989 Phys. Rev. Lett. 62, 768.Google Scholar
Perry, A. J. 1986 Ph.D. thesis, Australian National University, Canberra.Google Scholar
Rehm, R. G. 1970 Phys. Fluids 13, 282.CrossRefGoogle Scholar
Rode, A. V. et al. 1990 Private communication.Google Scholar
Shearer, J. W., Kidder, R. E. & Zink, J. W. 1970. Bull. Am. Phys. Soc. 15, 1483.Google Scholar
Szichman, H. 1988 Phys. Fluids 31, 1702.Google Scholar
Vveihan, Tan et al. 1986 Laser Part. Beams 4, 231.Google Scholar
Yamanaka, C. & Nakai, S. 1986 Nature 319, 757.CrossRefGoogle Scholar