Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T01:26:29.772Z Has data issue: false hasContentIssue false

Disembodying cognition

Published online by Cambridge University Press:  11 March 2014

Anjan Chatterjee*
Affiliation:
University of Pennsylvania
*
Correspondence addresses: Anjan Chatterjee, Department of Neurology and the Center for Cognitive Neuroscience, University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, PA 19104, USA. E-mail: [email protected].

Abstract

The idea that concepts are embodied by our motor and sensory systems is popular in current theorizing about cognition. Embodied cognition accounts come in different versions and are often contrasted with a purely symbolic amodal view of cognition. Simulation, or the hypothesis that concepts simulate the sensory and motor experience of real world encounters with instances of those concepts, has been prominent in psychology and cognitive neuroscience. Here, with a focus on spatial thought and language, I review some of the evidence cited in support of simulation versions of embodied cognition accounts. While these data are extremely interesting and many of the experiments are elegant, knowing how to best interpret the results is often far from clear. I point out that a quick acceptance of embodied accounts runs the danger of ignoring alternate hypotheses and not scrutinizing neuroscience data critically. I also review recent work from my lab that raises questions about the nature of sensory motor grounding in spatial thought and language. In my view, the question of whether or not cognition is grounded is more fruitfully replaced by questions about gradations in this grounding. A focus on disembodying cognition, or on graded grounding, opens the way to think about how humans abstract. Within neuroscience, I propose that three functional anatomic axes help frame questions about the graded nature of grounded cognition. First, are questions of laterality differences. Do association cortices in both hemispheres instantiate the same kind of sensory or motor information? Second, are questions about ventral dorsal axes. Do neuronal ensembles along this axis shift from conceptual representations of objects to the relationships between objects? Third, are questions about gradients centripetally from sensory and motor cortices towards and within perisylvian cortices. How does sensory and perceptual information become more language-like and then get transformed into language proper?

Type
Research Article
Copyright
Copyright © UK Cognitive Linguistics Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmann, L. J. P., Saleem, A., Kendall, D., Heilman, K. M. & Rothi, L. J. G.. 2006. Orthographic directionality and thematic role illustration in English and Arabic. Brain and Language 97(3). 306316.Google Scholar
Amorapanth, P. X., Widick, P. & Chatterjee, A.. In press. The neural basis for spatial relations. Journal of Cognitive Neuroscience.Google Scholar
Barsalou, L. W. 1999. Perceptual symbol systems. Behavioral and Brain Sciences 22. 577660.Google Scholar
Barsalou, L. W. 2005. Abstraction as dynamic interpretation in perceptual symbol systems. In Gershkoff-Stowe, L. & Rakison, D. (eds.), Building object categories in developmental time, 389431. Mahwah, NJ: Erlbaum.Google Scholar
Barsalou, L. W. 2007. Grounded cognition. Annual Review of Psychology 59(1). 617645.CrossRefGoogle Scholar
Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T. & Dronkers, N. F.. 2003. Voxel-based lesion symptom mapping. Nature Neuroscience 6. 448450.CrossRefGoogle ScholarPubMed
Bedny, M., Caramazza, A., Grossman, E., Pascual-Leone, A. & Saxe, R.. 2008. Concepts are more than percepts: The case of action verbs. Journal of Neuroscience 28(44). 1134711353.CrossRefGoogle ScholarPubMed
Beeman, M. & Chiarello, C. (eds.). 1998. Right hemisphere language comprehension: Perspectives from cognitive neuroscience. Mahwah, NJ: Erlbaum.Google Scholar
Beilock, S. L., Lyons, I. M., Mattarella-Micke, A., Nusbaum, H. C. & Small, S. L.. 2008. Sports experience changes the neural processing of action language. Proceedings of the National Academy of Sciences 105. 1326913273.Google Scholar
Berndt, R. S., Mitchum, C. C., Haendiges, A. N. & Sandson, J.. 1997. Verb retrieval in aphasia: 2. Relationship to sentence processing. Brain and Language 56. 107137.CrossRefGoogle ScholarPubMed
Berndt, R. S., Haendiges, A. N., Mitchum, C. C. & Sandson, J.. 1997. Verb retrieval in aphasia: 1. Characterizing single word impairments. Brain and Language 56. 68106.Google Scholar
Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T. & Medler, D. A.. 2005. Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience 17. 905917.Google Scholar
Borghi, A. M., Glenberg, A. M. & Kaschak, M. P.. 2004. Putting words in perspective. Memory and Cognition 32(6). 863873.Google Scholar
Bornkessel, I., Zysset, S., Friederici, A. D., von Cramon, D. Y. & Schlesewsky, M.. 2005. Who did what to whom? The neural basis of argument hierarchies during language comprehension. Neuroimage 26(1). 221233.Google Scholar
Bowerman, M. & Choi, S.. 2001. Shaping meanings for language: Universal and language-specific in the acquisition of spatial semantic categories. In Bowerman, M. & Levinson, S. C. (eds.), Language acquisition and conceptual development, 475511. Cambridge: Cambridge University Press.Google Scholar
Bub, D. N., Masson, M. E. J. & Cree, G. S.. 2008. Evocation of functional and volumetric gestural knowledge by objects and words. Cognition 106(1). 2758.CrossRefGoogle ScholarPubMed
Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., Porro, C. A. & Rizzolatti, G.. 2004. Neural circuits involved in the recognition of actions performed by non-conspecifics: An fMRI study. Journal of Cognitive Neuroscience 16. 114126.CrossRefGoogle Scholar
Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V. & Rizzolatti, G.. 2005. Listening to action-related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Cognitive Brain Research 24(3). 355363.Google Scholar
Calvo-Merino, B., Glaser, D. E. & Grezes, J.. 2005. Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex 15. 12431249.CrossRefGoogle ScholarPubMed
Caplan, D. 1995. Issues arising in contemporary studies of disorders of syntactic processing in sentence comprehension in agrammatic patients. Brain and Language 50. 325338.Google Scholar
Cappa, S. F., Binetti, G., Pezzini, A., Padovani, A., Rozzini, L. & Trabucchi, M.. 1998. Object and action naming in Alzheimer's disease and frontotemporal dementia. Neurology 50. 351355.CrossRefGoogle ScholarPubMed
Caramazza, A. & Miceli, G.. 1991. Selective impairment of thematic role assignment in sentence processing. Brain and Language 41. 402436.CrossRefGoogle ScholarPubMed
Cattaneo, L. & Rizzolatti, G.. 2009. The mirror neuron system. Archives of Neurology 56. 557560.Google Scholar
Chatterjee, A. 2001. Language and space: Some interactions. Trends in Cognitive Science 5. 5561.Google Scholar
Chatterjee, A. 2005. A madness to the methods in cognitive neuroscience? Journal of Cognitive Neuroscience 17. 847849.Google Scholar
Chatterjee, A. 2008. The neural organization of spatial thought and language. Seminars in Speech and Language 29. 226238.Google Scholar
Chatterjee, A. & Maher, L.. 2000. Grammar and agrammatism. In Gonzalez-Rothi, L., Crosson, B. & Nadeau, S. (eds.), Aphasia and language: Theory to practice, 133156. New York: Guilford Press.Google Scholar
Chatterjee, A., Maher, L. M., Gonzalez-Rothi, L. J. & Heilman, K. M.. 1995. Asyntactic thematic role assignment: The use of a temporal-spatial strategy. Brain and Language 49. 125139.Google Scholar
Chatterjee, A., Maher, L. M. & Heilman, K. M.. 1995. Spatial characteristics of thematic role representation. Neuropsychologia 33. 643648.Google Scholar
Chatterjee, A., Southwood, M. H. & Basilico, D.. 1999. Verbs, events and spatial representations. Neuropsychologia. 395402.Google Scholar
Chen, E., Widick, P. & Chatterjee, A.. 2008. Functional-anatomical organization of predicate metaphor processing. Brain and Language 107(3). 194202.Google Scholar
Chokron, S. & Agostini, M. De. 2002. The influence of handedness on profile and line drawing directionality in children, young, and older normal adults. Brain and Cognition 48. 333336.Google Scholar
Clark, A. 1999. An embodied cognitive science? Trends in Cognitive Sciences 3(9). 345351.Google Scholar
Damasio, A. 1989. Time-locked multiregional retroactivation: A system level proposal for the neural substrates of recall and recognition. Cognition 33. 2562.Google Scholar
Damasio, H., Grabowski, T. J., Tranel, D., Ponto, L. L., Hichwa, R. D. & Damasio, A. R.. 2001. Neural correlates of naming actions and of naming spatial relations. Neuroimage 13 (6.1). 10531064.Google Scholar
Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., Grassi, F. & Fazio, F.. 1997. Brain activity during observation of actions. Influence of action content and subject strategy. Brain 120. 17631777.Google Scholar
Dehaene, S., Bossini, S. & Giraux, P.. 1993. The mental representation of parity and number magnitide. Journal of Experimental Psychology: General 122. 371396.Google Scholar
Dove, G. 2009. Beyond perceptual symbols: A call for representational pluralism. Cognition.Google Scholar
Emmorey, K., Damasio, H., McCullough, S., Grabowski, T., Ponto, L. L., Hichwa, R. D. & Bellugi, U.. 2002. Neural systems underlying spatial language in American Sign Language. Neuroimage 17(2). 812824.Google Scholar
Epstein, R. & Kanwisher, N.. 1998. A cortical representation of the local visual environment. Nature 392. 598601.Google Scholar
Farah, M. J. 1990. Visual agnosia. Cambridge, MA: The MIT Press.Google Scholar
Fiez, J. A., Raichle, M. E., Balota, D. A., Tallal, P. & Petersen, S. E.. 1996. PET activation of posterior temporal regions during auditory word presentation and verb generation. Cerebral Cortex 6(1). 110.Google Scholar
Fischer, M. H. & Zwaan, R. A.. 2008. Embodied language: A review of the role of the motor system in language comprehension. The Quarterly Journal of Experimental Psychology 61(6). 825850.Google Scholar
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F. & Rizzolatti, G.. 2005. Parietal lobe: From action organization to intention understanding. Science 308(5722). 662667.Google Scholar
Frederici, A. 1982. Syntactic and semantic processing in aphasic deficits: The availability of prepositions. Brain and Language 15. 249258.Google Scholar
Gennari, S., Sloman, S. A., Malt, B. C. & Fitch, W.. 2002. Motion events in language and cognition. Cognition 83. 4979.Google Scholar
Gentner, D. 1988. Metaphor as structure mapping: The relational shift. Child Development 59. 4759.Google Scholar
Gentner, D. 2003. Why we're so smart. In Gentner, D. & Goldin-Meadows, S. (eds.), Language in Mind, 195235. Cambridge, MA: The MIT Press.Google Scholar
Gentner, D. & Loewenstein, J.. 2002. Relational language and relational thought. In Byrnes, J. & Amsel, E. (eds.), Language, literacy and cognitive development, 87120. Mahwah, NJ: Erlbaum.Google Scholar
Gentner, D. & Stevens, A. L.. 1983. Mental models. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Geschwind, N. 1965. Disconnexion syndromes in animals and man. Brain 88. 237–294, 585644.CrossRefGoogle ScholarPubMed
Gibbs, R. W. 1996. Why many concepts are metaphorical. Cognition 61. 309319.Google Scholar
Gibbs, R. W., Lima, P. L. Costa & Francozo, E.. 2004. Metaphor is grounded in embodied experience. Journal of Pragmatics 36(7). 11891210.Google Scholar
Glenberg, A. M. & Kaschak, M. P.. 2002. Grounding language in action. Psychonomic Bulletin and Review.Google Scholar
Glenberg, A. M. & Robertson, D.. 2000. Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language 43. 379401.Google Scholar
Glenberg, A. M., Sato, M. & Cattaneo, L.. 2008. Use-induced motor plasticity afects the processing of abstract and concrete language. Current Biology 18(7). R290R291.Google Scholar
Glover, S., Rosenbaum, D., Graham, J. & Dixon, P.. 2004. Grasping the meaning of words. Experimental Brain Research 154(1). 103108.Google Scholar
Goldenberg, G. 2003. Apraxia and beyond: Life and work of Hugo Liepmann. Cortex 39(3). 509524.Google Scholar
Grezes, J., Fonlupt, P., Bertenthal, B., Chantal, D.-M., Segebarth, C. & Decety, J.. 2001. Does perception of biological motion rely on specific brain regions? Neuroimage 13. 775785.Google Scholar
Grill-Spector, K. & Malach, R.. 2001. fMRI adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica 107. 293321.Google Scholar
Grodzinsky, Y. 1988. Syntactic representations in agrammatic aphasia: The case of prepositions. Language and Speech 31. 115134.Google Scholar
Grossman, E. D. & Blake, R.. 2002. Brain areas active during visual perception of biological motion. Neuron 35. 11671175.CrossRefGoogle ScholarPubMed
Grossman, M. 1998. Not all words are created equal: Category-specific deficits in central nervous system disease. Neurology 50. 324325.Google Scholar
Grossman, M., Anderson, C., Khan, A., Avants, B., Elman, L. & McCluskey, L.. 2008. Impaired action knowledge in amyotrophic lateral sclerosis. Neurology 71(18). 13961401.Google Scholar
Hayward, W. G. & Tarr, M. J.. 1995. Spatial language and spatial representation. Cognition 55. 3984.Google Scholar
Jackendof, R. 1987. On beyond zebra: The relation of linguistic and visual information. Cognition 26. 89114.Google Scholar
Jackendof, R. 1996. The architecture of the linguistic-spatial interface. In Bloom, P., Peterson, M. A., Nadel, L. & Garrett, M. F. (eds.), Language and space, 130. Cambridge, MA.: The MIT Press.Google Scholar
Jackson, J. 1932. Selected writings of John Hughlings Jackson. London: Hodder and Stoughton.Google Scholar
Johnson, M. 1987. The body in mind. Chicago: Chicago University Press.Google Scholar
Johnson-Frey, S. H. 2004. The neural bases of complex tool use in humans. Trends in Cognitive Sciences 8(2). 7178.Google Scholar
Johnson-Laird, P. N. 1996. Space to think. In Bloom, P., Peterson, M. A., Nadel, L. & Garrett, M. F. (eds.), Language and space, 437462. Cambridge, MA: The MIT Press.Google Scholar
Johnson-Laird, P. N. 2004. The history of mental models. In Manktelow, K. & Chung, M. C. (eds.), Psychology of reasoning: Theoretical and historical perspectives, 179212. New York: Psychology Press.Google Scholar
Johnson-Laird, P. N. 2006. How we reason. New York: Oxford University Press.Google Scholar
Kable, J. W. & Chatterjee, A.. 2006. The specificity of action representations in lateral occipitotemporal cortex. Journal of Cognitive Neuroscience 18. 14981517.Google Scholar
Kable, J. W., Kan, I., Wilson, A., Thompson-Schill, S. & Chatterjee, A.. 2005. Conceptual representations of action in lateral temporal cortex. Journal of Cognitive Neuroscience 17. 18551870.Google Scholar
Kable, J. W., Lease-Spellmeyer, J. & Chatterjee, A.. 2002. Neural substrates of action event knowledge. Journal of Cognitive Neuroscience 14. 795804.Google Scholar
Kanwisher, N., McDermott, J. & Chun, M.. 1997. The fusiform face area: A module in human extrastriate cortex specialized for perception of faces. Journal of Neuroscience 17. 43024311.CrossRefGoogle Scholar
Kanwisher, N., Woods, R. P., Iacoboni, M. & Mazziotta, J. C.. 1997. A locus in human extrastriate cortex for visual shape analysis. Journal of Cognitive Neuroscience 9. 33142.Google Scholar
Kaschak, M. P., Jones, J. L., Coyle, J. M. & Sell, A.. 2009. Language and body. In Wagner, R. K., Schatschneider, C. & Phythian-Sence, C. (eds.), Beyond decoding: The behavioral and biological foundations of reading comprehension, 326. New York: The Guilford Press.Google Scholar
Kaschak, M. P., Madden, C. J. & Therriault, D. J.. 2005. Perception of motion afects language processing. Cognition 94. 7989.Google Scholar
Kegl, J. 1995. Levels of representation and units of access relevant to agrammatism. Brain and Language 50. 151200.Google Scholar
Kemmerer, D. 2006. The semantics of space: Integrating linguistic typology and cognitive neuroscience. Neuropsychologia 44. 16071621.Google Scholar
Kemmerer, D., Castillo, J. G., Talavage, T., Patterson, S. & Wiley, C.. 2008. Neuroanatomical distribution of five semantic components of verbs: Evidence from fMRI. Brain and Language 107(1). 1643.Google Scholar
Kemmerer, D. & Gonzalez-Castillo, J.. In press. The two-level theory of verb meaning: An approach to integrating the semantics of action with the mirro neuron system. Brain and Language.Google Scholar
Kiehl, K. A., Liddle, P. F., Smith, A. M., Mendrek, A., Forster, B. B. & Hare, R. D.. 1999. Neural pathways involved in the processing of concrete and abstract words. Human Brain Mapping 7. 225233.Google Scholar
Kinsbourne, M. 1987. Mechanisms of unilateral neglect. In Jeannerod, M. (ed.), Neurophy-siological and neuropsychological aspects of spatial neglect, 6986. New York: North-Holland.Google Scholar
Kourtzi, Z. & Kanwisher, N.. 2000. Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience 12. 4855.Google Scholar
Lakoff, G. 1987. Women, fire and dangerous things. Chicago: University of Chicago Press.Google Scholar
Lakoff, G. 1990. The invariance hypothesis: Is abstract reason based on image-schemas? Cognitive Linguistics 1. 3974.Google Scholar
Lakoff, G. & Johnson, M.. 1980. Metaphors we live by. Chicago: University of Chicago Press.Google Scholar
Landau, B. & Jackendoff, R.. 1993. ‘What’ and ‘where’ in spatial language and spatial cognition. Behavioral and Brain Sciences 16. 217265.Google Scholar
Levinson, S. C. 1996. Language and space. Annual Review of Anthropology 25. 353382.Google Scholar
Li, Y., Hooser, S. D. Van, Mazurek, M., White, L. E. & Fitzpatrick, D.. 2008. Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456(7224). 952956.Google Scholar
Liepmann, H. 1908. Drei Aufsätze aus dem Apraxiegebiet. Berlin: Karger.Google Scholar
Lissauer, H. 1890. Ein Fall von Seelenblindheit Nebst Einem Beitrage zur Theori derselben. Archiv fur Psychiatrie und Nervenkrankheiten 21. 222270.CrossRefGoogle Scholar
Lyons, I. M., Mattarella-Micke, A., Cieslak, M., Nusbaum, H. C., Small, S. L. & Beilock, S. L.. In press. The role of personal experience in the neural processing of action-related language. Brain and Language.Google Scholar
Maass, A., Pagani, D. & Berta, E.. 2007. How beautiful is the goal and how violent is the fistfight? Spatial bias in the interpretation of human behavior. Social Cognition 25(6). 833852.Google Scholar
Maass, A. & Russo, A.. 2003. Directional bias in the mental representation of spatial events: Nature or culture? Psychological Science 14. 296301.Google Scholar
Maher, L., Chatterjee, A., Gonzalez-Rothi, L. & Heilman, K.. 1995. Agrammatic sentence production: The use of a temporal-spatial strategy. Brain and Language 49. 105124.Google Scholar
Mahon, B. Z. & Caramazza, A.. 2008. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris 102. 5970.Google Scholar
Malach, R., Reppas, J., Benson, R., Kwong, K., Jiang, H., Kennedy, W., Ledden, P., Brady, T., Rosen, B. & Tootell, R.. 1995. Object related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences 92. 81358139.Google Scholar
Mandler, J. M. 2004. The foundations of mind: Origins of conceptual thought. New York: Oxford University Press.Google Scholar
Marshall, J., Chiat, S. & Pring, T.. 1998. Verb retrieval and sentence production in aphasia. Brain and Language 63. 159183.Google Scholar
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L. & Ungerleider, L. G.. 1995. Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270. 102105.Google Scholar
Martin, A., Ungerleider, L. & Haxby, J.. 2000. The sensory/motor model of semantic representation of objects. In Gazzaniga, M. (ed.), The new cognitive neurosciences, 10231036. 2nd edn. Cambridge, MA: The MIT Press.Google Scholar
Martin, A. & Weisberg, J.. 2003. Neural foundations for understanding social and mechanical concepts. Cognitive Neuropsychology 20. 575587.Google Scholar
Matlock, T. 2004. Fictive motion as cognitive simulation. Memory andCognition 32. 13891400.Google Scholar
Mesulam, M.-M. 1998. From sensation to cognition. Brain 121. 10131052.Google Scholar
Meteyard, L., Bahrami, B. & Vigliocco, G.. 2007. Motion detection and motion verbs. Psychological Science. 18(11). 10071013.Google Scholar
Meteyard, L., Zokaei, N., Bahrami, B. & Vigliocco, G.. 2008. Visual motion interferes with lexical decision on motion words. Current Biology 18(17). R732R733.Google Scholar
Miceli, G., Silveri, M. C., Villa, G. & Caramazza, A.. 1984. On the basis for the agrammatics difficulty in producing main verbs. Cortex 20. 207220.Google Scholar
Moro, V., Urgesi, C., Pernigo, S., Lanteri, P., Pazzaglia, M. & Aglioti, S. M.. 2008. The neural basis of body form and body action agnosia. Neuron 60(2). 235246.CrossRefGoogle ScholarPubMed
Murphy, G. L. 1996. On metaphoric representation. Cognition 60. 173204.Google Scholar
Nachson, I., Argaman, E. & Luria, A.. 1999. Effects of directional habits and handedness on aesthetic preference for left and right profiles. Journal of Cross-Cultural Psychology 30. 106114.Google Scholar
Negri, G. A. L., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z. & Caramazza, A.. 2007. What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology 24(8). 795816.Google Scholar
Neininger, B. & Pulvermüller, F.. 2003. Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia 41(1). 5370.Google Scholar
Oram, M. W. & Perrett, D. I.. 1994. Responses of anterior superior temporal polysensory (STPa) neurons to ‘biological motion’ stimuli. Journal of Cognitive Neuroscience 6. 99116.Google Scholar
Padakannaya, P., Devi, M. L., Zaveria, B., Chengappa, S. K. & Vaid, J.. 2002. Directional scanning efect and strength of reading habit in picture naming and recall. Brain and Cognition 48. 404490.Google Scholar
Paivio, A. 1990. Mental representations: A dual coding approach. New York: Oxford University Press.Google Scholar
Papafragou, A., Massey, C. & Gleitman, L.. 2002. Shake, rattle, ‘n’ roll: The representation of motion in language and cognition. Cognition 84. 189212.Google Scholar
Pazzaglia, M., Smania, N., Corato, E. & Aglioti, S. M.. 2008. Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience 28(12). 30303041.CrossRefGoogle ScholarPubMed
Peelen, M. V. & Downing, P. E.. 2007. The neural basis of visual body perception. Nature Reviews Neuroscience 8(8). 636648.Google Scholar
Perani, D., Cappa, S., Schnur, M., Tettamanti, M., Collina, S. & Rosa, M.. 1999. The neural correlates of verb and noun processing: A PET study. Brain 122. 23372344.Google Scholar
Pirog Revill, K., Aslin, R. N., Tanenhaus, M. K. & Bavelier, D.. 2008. Neural correlates of partial lexical activation. Proceedings of the National Academy of Sciences 105(35). 1311113115.Google Scholar
Posner, M. 1986. Chronometric explorations of mind. New York: Oxford University Press.Google Scholar
Pruden, S. M., Hirsh-Pasek, K., Maguire, M. J. & Meyer, M. A.. 2004. Foundations ofverb learning: Infants form categories of path and manner in motion events. In Brugos, A., Micciulla, L. & Smith, C. E. (eds.), Proceedings of the 28th annual Boston University Conference on Language Development, 461472. Somerville, MA: Cascadilla Press.Google Scholar
Pulvermüller, F., Hauk, O. & Nikulin, V. V.. 2005. Functional links between motor and language systems. European Journal of Neuroscience 21. 793797.Google Scholar
Rapp, A. M., Leube, D. T., Grodd, W. & Kircher, T. T. J.. 2004. Neural correlates of metaphor processing. Cognitive Brain Research 20. 395402.Google Scholar
Regier, T. 1995. A model of human capacity for categorizing spatial relations. Cognitive Linguistics 6. 6388.CrossRefGoogle Scholar
Richardson, D., Spivey, M., Barsalou, L. & McRae, K.. 2003. Spatial representations activated during real-time comprehension of verbs. Cognitive science 27. 768780.Google Scholar
Rizzolatti, G. & Craighero, L.. 2004. The mirror-neuron system. Annual Review of Neuro-science 27. 169192.Google Scholar
Rothi, L. J. G., Ochipa, C. & Heilman, K. M.. 1991. A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology 8(6). 443458.Google Scholar
Saffran, E. M., Schwartz, M. F. & Marin, O. S. M.. 1980. The word order problem in agrammatism. II. Production. Brain and Language 10. 263280.Google Scholar
Saygin, A. P., McCullough, S., Alac, M. & Emmorey, K.. In press. Modulation of BOLD response in motion-sensitive lateral temporal cortex by real and fictive motion sentences. Journal of Cognitive Neuroscience.Google Scholar
Schmidt, G. L., Kranjec, A., Cardillo, E. R. & Chatterjee, A.. In press. Beyond laterality: A critical assessment of research on the neural basis of metaphor. Journal of the International Neuropsychological Society.Google Scholar
Schwartz, M. F., Saffran, E. M. & Marin, O. S. M.. 1980. The word order problem in agram-matism. I. Comprehension. Brain and Language 10. 249262.Google Scholar
Serino, A., Filippo, L. De, Casavecchia, C., Coccia, M., Shiffrar, M. & Ladavas, E.. 2009. Lesions to the motor system afect action perception. Journal of Cognitive Neuroscience. 22(3). 413426.CrossRefGoogle Scholar
Shapiro, L. P. & Levine, B. A.. 1990. Verb processing during sentence comprehension in aphasia. Brain Language 38. 2147.Google Scholar
Shetreet, E., Palti, D. & Friedmann, N., Hadar, U.. 2007. Cortical representation of verb processing in sentence comprehension: Number of complements, subcategorization, and thematic frames. Cerebral Cortex 17(8). 19581969.Google Scholar
Shulman, G. L., Ollinger, J. M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Petersen, S. E. & Corbetta, M.. 1999. Areas involved in encoding and applying directional expectations to moving objects. The Journal of Neuroscience 19. 94809496.Google Scholar
Simmons, W. K. & Barsalou, L. W.. 2003. The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology 20. 451486.Google Scholar
Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D. & Schacter, D. L.. 2003. Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. NeuroImage 19. 613626.Google Scholar
Stanfield, R. & Zwaan, R.. 2001. The effect of implied orientation derived from verbal context on picture recognition. Psychological Science 12. 153156.Google Scholar
Sweetser, E. 1990. From etymology to pragmatics: The mind-body metaphor in semantic structure and semantic change. Cambridge: Cambridge University Press.Google Scholar
Symes, E., Ellis, R. & Tucker, M.. 2007. Visual object affordances: Object orientation. Acta Psychologica 124(2). 238255.Google Scholar
Talmy, L. 1983. How language structures space. In Pick, H. & Acredolo, L. (eds.), Spatial orientation: Theory, research and application, 225282. New York: Plenum Press.Google Scholar
Talmy, L. 1985. Lexicalization patterns: Semantic structure in lexical forms. In Shopen, T. (ed.), Language typology and syntactic description, 57149. New York: Cambridge University Press.Google Scholar
Talmy, L. 1996. Fictive motion in language and ‘ception’. In Bloom, P., Peterson, M., Nadel, L. & Garrett, M. (eds.), Language and space, 211276. Cambridge, MA: The MIT Press.Google Scholar
Talmy, L. 2000. Towards a cognitive semantics: Concept structuring systems. Cambridge, MA: The MIT Press.Google Scholar
Talmy, L. In press. Cognitive semantics: An overview. In Maienborn, C., von Heusinger, K. & Portner, P. (eds.), Handbook of semantics. New York: Mouton de Gruyter.Google Scholar
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M. & Sedivy, J. C.. 1995. Integration of visual and linguistic information in spoken language comprehension. Science 268. 16321634.Google Scholar
Taylor, L. J. & Zwaan, R. A.. 2009. Action in cognition: The case of language. Language and Cognition 1(1). 4558.Google Scholar
Tettamanti, M., Buccino, G., Saccuman, M., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F. & Perani, D.. 2005. Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience 17(2). 273281.Google Scholar
Tranel, D. & Kemmerer, D.. 2004. Neuroanatomical correlates of locative prepositions. Cognitive Neuropsychology 21. 719749.Google Scholar
Tucker, M. & Ellis, R.. 2004. Action priming by briefly presented objects. Acta Psychologica 116(2). 185203.Google Scholar
Tversky, B., Kugelmass, S. & Winter, A.. 1991. Cross-cultural and developmental trends in graphic productions. Cognitive Psychology 23. 515557.Google Scholar
Urgesi, C., Moro, V., Candidi, M. & Aglioti, S. M.. 2006. Mapping implied body actions in the human motor system. Journal of Neuroscience 26(30). 79427949.Google Scholar
Vaid, J., Singh, M., Sakhuja, T. & Gupta, G. C.. 2002. Stroke direction asymmetry in figure drawing: Influence of handedness and reading/writing habits. Brain and Cognition 48. 597602.Google Scholar
Wallentin, M., Ostergaard, S., Lund, T., Ostergaard, L. & Roepstorff, A.. 2005. Concrete spatial language: See what I mean? Brain and Language 92. 221233.Google Scholar
Warburton, E., Wise, R. J. S., Price, C. J., Weiller, C., Hadar, U., Ramsay, S. & Frackowiak, R. S. J.. 1996. Noun and verb retrieval by normal subjects. Studies with PET. Brain 119. 159179.Google Scholar
Warrington, E. K. & Shallice, T.. 1984. Category specific semantic impairments. Brain 107. 829854.Google Scholar
Weliky, M., Bosking, W. H. & Fitzpatrick, D.. 1996. A systematic map of direction preference in primary visual cortex. Nature 379(6567). 725728.Google Scholar
Wilson, M. 2002. Six views of embodied cognition. Psychonomic Bulletin and Review 9(4). 625636.Google Scholar
Wise, R. J., Howard, D., Mummery, C. J., Fletcher, P., Lef, A., Buchel, C. & Scott, S. K.. 2000. Noun imageability and the temporal lobes. Neuropsychologia 38. 985994.Google Scholar
Wu, D. H., Morganti, A. & Chatterjee, A.. 2008. Neural substrates of processing path and manner information of a moving event. Neuropsychologia 46. 704713.Google Scholar
Wu, D. H., Waller, S. & Chatterjee, A.. 2007. The functional neuroanatomy of thematic role and locative relational knowledge. The Journal of Cognitive Neuroscience 19. 15421555.Google Scholar
Zingeser, L. B. & Berndt, R. S.. 1990. Retrieval of nouns and verbs in agrammatism and anomia. Brain and Language 39. 1432.Google Scholar
Zwaan, R. A. & Taylor, L. J.. 2006. Seeing, acting, understanding: Motor resonance in language comprehension. Journal of Experimental Psychology-General 135. 111.Google Scholar