Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T11:16:23.615Z Has data issue: false hasContentIssue false

The effects of direction and orientation of located objects on spatial language comprehension

Published online by Cambridge University Press:  22 April 2018

MICHELE BURIGO*
Affiliation:
University of Bielefeld
HOLGER SCHULTHEIS
Affiliation:
University of Bremen
*
Address for correspondence: Michele Burigo, Cognitive Interaction Technology Excellence Center (CITEC) – University of Bielefeld, Bielefeld, Germany; e-mail: [email protected]

Abstract

Spatial descriptions such as “The spider is behind the bee” inform the listener about the location of the spider (the located object) in relation to an object whose location is known (i.e., the bee, also called the reference object). If the geometric properties of the reference object have been shown to affect how people use and understand spatial language (Carlson & Van Deman, 2008; Carlson-Radvansky & Irwin, 1994), the geometric features carried by the located object have been deemed irrelevant for spatial language (Landau, 1996; Talmy, 1983). This view on the (ir)relevance of the located object has been recently questioned by works showing that presenting the located object in misalignment with the reference object has consequences for spatial language understanding (Burigo, Coventry, Cangelosi, & Lynott, 2016; Burigo & Sacchi, 2013). In the reported study we aimed to investigate which geometric properties of the located object affect the apprehension of a spatial description, and to disentangle whether the information concerning its orientation (axis), direction (front/rear), or a combination of the two gives rise to conflict. The outcomes of three placing tasks suggest that only the information concerning the direction of the located object is critical for spatial language use.

Type
Article
Copyright
Copyright © UK Cognitive Linguistics Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Michele Burigo works at the Cognitive Interaction Technology Excellence Center (CITEC), University of Bielefeld, Germany. Holger Schultheis, Department of Informatics, University of Bremen. The work reported in this paper was conducted in the scope of the Bremen Spatial Cognition Center and the project R1-[ImageSpace] of the Collaborative Research Center SFB/TR 8 Spatial Cognition. This research was also supported by the Cluster of Excellence Cognitive Interaction Technology ‘CITEC’ (EXC 277) at Bielefeld University, which is funded by the German Research Foundation (DFG). We are grateful to Anna-Lena Zurmhülen for her help in running the experiments.

References

references

Baayen, R. H. (2008). Analyzing linguistic data: a practical introduction to statistics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68 (3), 255278.CrossRefGoogle ScholarPubMed
Bricolo, E., Poggio, T., & Logothetis, N. K. (1997). 3D object recognition: a model of view-tuned neurons. In Mozer, M. C., Jordan, M. I., & Petsche, T. (Eds.), Advances in neural information processing systems 9 (pp. 4147). Cambridge, MA: MIT Press.Google Scholar
Burigo, M., Coventry, K. R., Cangelosi, A., & Lynott, D. (2016). Spatial language and converseness. Quarterly Journal of Experimental Psychology, 69(12), 23192337.CrossRefGoogle ScholarPubMed
Burigo, M., & Sacchi, S. (2013). Object orientation affects spatial language comprehension. Cognitive Science, 37, 14711492.CrossRefGoogle ScholarPubMed
Carlson, L. A., & Van Deman, S. R. (2008). Inhibition within a reference frame during the interpretation of spatial language. Cognition, 106(1), 384407.CrossRefGoogle ScholarPubMed
Carlson, L. A., West, R., Taylor, H. A., & Herndon, R. W. (2002). Neural correlates of spatial term use. Journal of Experimental Psychology: Human Perception and Performance, 28(6), 13911408.Google ScholarPubMed
Carlson-Radvansky, L. A., & Irwin, D. E. (1994). Reference frame activation during spatial term assignment. Journal of Memory and Language, 33, 646671.CrossRefGoogle Scholar
Carlson-Radvansky, L. A., & Logan, G. D. (1997). The influence of reference frame selection on spatial template construction. Journal of Memory and Language, 37, 411437.CrossRefGoogle Scholar
Carlson-Radvansky, L. A., & Radvansky, G. A. (1996). The influence of functional relations on spatial term selection. Psychological Science, 7(1), 5660.CrossRefGoogle Scholar
Coventry, K. R., & Garrod, S. C. (2004). Saying, seeing and acting: the psychological semantics of spatial prepositions. Hove and New York: Psychology Press, Taylor & Francis Group.CrossRefGoogle Scholar
Coventry, K. R., Prat-Sala, M., & Richards, L. (2001). The interplay between geometry and function in the comprehension of over, under, above, and below. Journal of Memory and Language, 44(3), 376398.CrossRefGoogle Scholar
Duran, N. D., & Dale, R. (2014). Perspective-taking in dialogue as self-organization under social constraints. New Ideas in Psychology, 32, 131146.CrossRefGoogle Scholar
Duran, N., Dale, R., & Galati, A. (2016). Toward integrative dynamic models for adaptive perspective taking. Topics in Cognitive Science, 8(4), 761779.CrossRefGoogle ScholarPubMed
Dyde, R. T., Jenkin, M. R., & Harris, L. R. (2006). The subjective visual vertical and the perceptual upright. Experimental Brain Research, 173(4), 612622.CrossRefGoogle ScholarPubMed
Howard, I. P. (1982). Human visual orientation. New York: John Wiley & Sons.Google Scholar
Jackendoff, R. (1983). Semantic and cognition. Cambridge, MA: MIT Press.Google Scholar
Jackendoff, R. (1996). The architecture of the linguistic–spatial interface. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. F. (Eds.), Language and space (pp. 130). Cambridge, MA: MIT Press.Google Scholar
Jackendoff, R. (2002). Foundations of language: brain, meaning, grammar and evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Jackendoff, R., & Landau, B. (1991). Spatial language and spatial cognition. In Napoli, D. J. & Kegl, J. A. (Eds.), Bridges between psychology and linguistics: a Swarthmore festschrift for Lila Gleitman (pp. 145169). Hillsdale, NJ: Erlbaum.Google Scholar
Jolicoeur, P. (1985). The time to name disoriented natural objects. Memory and Cognition, 13(4), 289303.CrossRefGoogle ScholarPubMed
Kraemer, H. C., & Blasey, C. M. (2004). Centring in regression analyses: a strategy to prevent errors in statistical inference. International Journal of Methods in Psychiatric Research, 13(3), 141151.CrossRefGoogle ScholarPubMed
Landau, B. (1996). Multiple geometric representations of objects in language and language learners. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. F. (Eds.), Language and space (pp. 317363). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Landau, B., & Stecker, D. S. (1990). Objects and places: geometric and syntactic representations in early lexical learning. Cognitive Development, 5(3), 287312.CrossRefGoogle Scholar
Large, M. E., Mcmullen, P. A., & Hamm, J. P. (2003). The role of axes of elongation and symmetry in rotated object naming. Attention, Perception, & Psychophysics, 65(1), 119.CrossRefGoogle ScholarPubMed
Levelt, W. J. M. (1996). Perspective taking and ellipsis in spatial description. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. F. (Eds.), Language and space (pp. 78107). Cambridge, MA: MIT Press.Google Scholar
Levinson, S. C. (1996). Frames of reference and Molyneux’s question. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. F. (Eds.), Language and space (pp. 109169). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Levinson, S. C. (2003). Space in language and cognition: explorations in cognitive diversity, Vol. 5. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Li, X., Carlson, L. A., Mou, W., Williams, M. R., & Miller, J. E. (2011). Describing spatial locations from perception and memory: the influence of intrinsic axes on reference object selection. Journal of Memory and Language, 65(2), 222236.CrossRefGoogle Scholar
Lockwood, E. H., & Macmillan, R. H. (1978). Geometric symmetry. Cambridge: Cambridge University Press.Google Scholar
Logan, G., & Sadler, D. (1996). A computational analysis of the apprehension of spatial relations. In Bloom, P., Peterson, M., Nadel, L., & Garrett, M. F. (Eds.), Language and space (pp. 493529). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Marr, D. (1982). Vision. Cambridge, MA: MIT Press.Google Scholar
Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London Series B, 200(1140), 269294.Google ScholarPubMed
Miller, J. E., Carlson, L. A., & Hill, P. L. (2011). Selecting a reference object. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(4), 840850.Google ScholarPubMed
Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-dimensional objects. Nature, 343(6255), 263266.CrossRefGoogle ScholarPubMed
Quinlan, P. T., & Humphreys, G. W. (1993). Perceptual frames of reference and two-dimensional shape recognition: further examination of internal axes. Perception, 22(11), 13431364.CrossRefGoogle ScholarPubMed
R Core Team. (2016). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Vienna, Austria. Online: <http://www.R-project.org> (last accessed September 2016).+(last+accessed+September+2016).>Google Scholar
Rock, I. (1973). Orientation and form. New York: Academic Press.Google Scholar
Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.Google Scholar
Schultheis, H., & Carlson, L. A. (2017). Mechanisms of reference frame selection in spatial term use: computational and empirical studies. Cognitive Science, 41(2), 276325.CrossRefGoogle ScholarPubMed
Sekuler, A. B., & Swimmer, M. B. (2000). Interactions between symmetry and elongation in determining reference frames for object perception. Canadian Journal of Experimental Psychology / Revue canadienne de psychologie expérimentale, 54(1), 4256.CrossRefGoogle ScholarPubMed
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701703.CrossRefGoogle ScholarPubMed
Talmy, L. (1983). How language structures space. In Pick, H. L. & Acredolo, L. P. (Eds.), Spatial orientation: theory, research, and application (pp. 225282). New York: Plenum Press.CrossRefGoogle Scholar
Tarr, M. J. (1995). Rotating objects to recognize them: a case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonomic Bulletin & Review, 2(1), 5582.CrossRefGoogle ScholarPubMed
Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21(2), 233282.CrossRefGoogle ScholarPubMed
Twiss, R. J., & Moores, E. M. (1992). Structural geology. New York: W. H. Freeman and Company.Google Scholar