Agent programming languages have often avoided the use of automated (first principles or hierarchical) planners in favour of predefined plan/recipe libraries for computational efficiency reasons. This allows for very efficient agent reasoning cycles, but limits the autonomy and flexibility of the resulting agents, oftentimes with deleterious effects on the agent's performance. Planning agents can, for instance, synthesise a new plan to achieve a goal for which no predefined recipe worked, or plan to make viable the precondition of a recipe belonging to a goal being pursued. Recent work on integrating automated planning with belief-desire-intention (BDI)-style agent architectures has yielded a number of systems and programming languages that exploit the efficiency of standard BDI reasoning, as well as the flexibility of generating new recipes at runtime. In this paper, we survey these efforts and point out directions for future work.