Personal information agents have emerged in the last decade to help users to cope with the increasing amount of information available on the Internet. These agents are intelligent assistants that perform several information-related tasks such as finding, filtering and monitoring relevant information on behalf of users or communities of users. In order to provide personalized assistance, personal agents rely on representations of user information interests and preferences contained in user profiles. In this paper, we present a summary of the state-of-the-art in user profiling in the context of intelligent information agents. Existing approaches and lines of research in the main dimensions of user profiling, such as acquisition, learning, adaptation and evaluation, are discussed.