Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T14:57:19.972Z Has data issue: false hasContentIssue false

On the automatic compilation of e-learning models to planning

Published online by Cambridge University Press:  08 February 2013

Antonio Garrido
Affiliation:
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain; e-mail: [email protected], [email protected]
Susana Fernández
Affiliation:
Departamento de Informática, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain; e-mail: [email protected], [email protected]
Lluvia Morales
Affiliation:
Departamento de Ciencias de la Computación e I.A., Universidad de Granada, C/ Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain; e-mail: [email protected], [email protected]
Eva Onaindía
Affiliation:
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain; e-mail: [email protected], [email protected]
Daniel Borrajo
Affiliation:
Departamento de Informática, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain; e-mail: [email protected], [email protected]
Luis Castillo
Affiliation:
Departamento de Ciencias de la Computación e I.A., Universidad de Granada, C/ Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain; e-mail: [email protected], [email protected]

Abstract

This paper presents a general approach to automatically compile e-learning models to planning, allowing us to easily generate plans, in the form of learning designs, by using existing domain-independent planners. The idea is to compile, first, a course defined in a standard e-learning language into a planning domain, and, second, a file containing students learning information into a planning problem. We provide a common compilation and extend it to three particular approaches that cover a full spectrum of planning paradigms, which increases the possibilities of using current planners: (i) hierarchical, (ii) including PDDL (Planning Domain Definition Language) actions with conditional effects and (iii) including PDDL durative actions. The learning designs are automatically generated from the plans and can be uploaded, and subsequently executed, by learning management platforms. We also provide an extensive analysis of the e-learning metadata specification required for planning, and the pros and cons on the knowledge engineering procedures used in each of the three compilations. Finally, we include some qualitative and quantitative experimentation of the compilations in several domain-independent planners to measure its scalability and applicability.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, C., Honey, P. 2002. Honey-alonso Learning Style Theoretical Basis (in Spanish). Retrieved December 2012, from http://www.estilosdeaprendizaje.es/menuprinc2.htm.Google Scholar
Baldiris, S., Santos, O., Barrera, C., Boticario, J.G., Velez, J., Fabregat, R. 2008. Integration of educational specifications and standards to support adaptive learning scenarios in ADAPTAPlan. Special Issue on New Trends on AI Techniques for Educational Technologies. International Journal of Computer Science and Applications 5(1), 88107.Google Scholar
Boticario, J., Santos, O. 2007. A dynamic assistance approach to support the development and modelling of adaptive learning scenarion based on educational standards. In Proceedings of Workshop on Authoring of Adaptive and Adaptable Hypermedia, International Conference on User Modelling, Corfu, Greece, 1–8.Google Scholar
Camacho, D., R-Moreno, M.D., Obieta, U. 2007. CAMOU: a simple integrated e-learning and planning techniques tool. In 4th International Workshop on Constraints and Language Processing, Roskilde University, Denmark, 1–11.Google Scholar
Castillo, L., Fdez.-Olivares, J., García-Perez, O.Palao, F. 2006. Efficiently handling temporal knowledge in an HTN planner. In Proceedings of 16th International Conference on Automated Planning and Scheduling (ICAPS 2006), Borrajo, D. & McCluskey, L. (eds.). AAAI, 63–72.Google Scholar
Castillo, L., Morales, L., Gonzalez-Ferrer, A., Fdez-Olivares, J., Borrajo, D., Onaindia, E. 2010. Automatic generation of temporal planning domains for e-learning problems. Journal of Scheduling 13(4), 347362.CrossRefGoogle Scholar
Essalmi, F., Ayed, L.J.B., Jemni, M., Kinshuk, Graf, S. 2010. A fully personalization strategy of E-learning scenarios. Computers in Human Behavior 26(4), 581591.CrossRefGoogle Scholar
Felder, R. M. 1996. Matters of style. American Society for Engineering Education Prism 6(4), 1823.Google Scholar
Fox, M., Long, D. 2003. PDDL2.1: an extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research 20, 61124.CrossRefGoogle Scholar
Fuentetaja, R., Borrajo, D., Linares López, C. 2009. A look-ahead B&B search for cost-based planning. In Proceedings of CAEPIA'09, Murcia, Spain, 105–114.Google Scholar
Garrido, A., Onaindía, E. 2010. On the application of planning and scheduling techniques to E-learning. In Proceedings of the 23rd International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE 2010)—Lecture Notes in Computer Science 6096, 244–253. Springer.Google Scholar
Garrido, A., Onaindia, E., Morales, L., Castillo, L., Fernandez, S., Borrajo, D. 2009. Modeling E-learning activities in automated planning. In Proceedings of the 3rd International Competition on Knowledge Engineering for Planning and Scheduling (ICKEPS-2009), Thessaloniki, Greece, 18–27.Google Scholar
IMSLD 2003. IMS Learning Design Specification. Version 1.0 (February, 2003). Retrieved December, 2012, from http://www.imsglobal.org/learningdesign.Google Scholar
IMSMD 2003. IMS Learning Resource Meta-data Specification. Version 1.3 (August, 2006). Retrieved December, 2012, from http://www.imsglobal.org/metadata.Google Scholar
Kontopoulos, E., Vrakas, D., Kokkoras, F., Bassiliades, N., Vlahavas, I. 2008. An ontology-based planning system for e-course generation. Expert Systems with Applications 35, 398406.CrossRefGoogle Scholar
Limongelli, C., Sciarrone, F., Vaste, G. 2008. LS-plan: an effective combination of dynamic courseware generation and learning styles in web-based education. In Adaptive Hypermedia and Adaptive Web-Based Systems, 5th International Conference, AH 2008, Nejdl, W., Kay, J., Pu, P. & Herder, E. (eds.)., 133–142. Springer.CrossRefGoogle Scholar
Méndez, N.D.D., Ramírez, C.J., Luna, J.A.G. 2005. IA planning for automatic generation of customized virtual courses. Frontiers in Artificial Intelligence and Applications. Planning, scheduling and constraint satisfaction: from theory to practice 117, 139148.Google Scholar
Mohan, P., Greer, J., McCalla, G. 2003. Instructional planning with learning objects. In IJCAI-03 Workshop Knowledge Representation and Automated Reasoning for E-Learning Systems, Acapulco, Mexico, 52–58.Google Scholar
Sharable Content Object Reference Model (SCORM) 2004. Retrieved December, 2012, from http://scorm.com.Google Scholar
Sicilia, M.A., Sánchez-Alonso, S., García-Barriocanal, E. 2006. On supporting the process of learning design through planners. CEUR Workshop Proceedings: Virtual Campus 2006 Post-Proceedings. Barcelona, Spain, 186(1), 81–89.Google Scholar
Ullrich, C 2008. Pedagogically founded courseware generation for web-based learning, No. 5260, Lecture Notes in Artificial Intelligence 5260, Springer.Google Scholar
Ullrich, C., Melis, E. 2009. Pedagogically founded courseware generation based on HTN-planning. Expert Systems With Applications 36(5), 93199332.CrossRefGoogle Scholar