Published online by Cambridge University Press: 02 August 2019
In the reinforcement learning context, a landmark is a compact information which uniquely couples a state, for problems with hidden states. Landmarks are shown to support finding good memoryless policies for Partially Observable Markov Decision Processes (POMDP) which contain at least one landmark. SarsaLandmark, as an adaptation of Sarsa(λ), is known to promise a better learning performance with the assumption that all landmarks of the problem are known in advance.
In this paper, we propose a framework built upon SarsaLandmark, which is able to automatically identify landmarks within the problem during learning without sacrificing quality, and requiring no prior information about the problem structure. For this purpose, the framework fuses SarsaLandmark with a well-known multiple-instance learning algorithm, namely Diverse Density (DD). By further experimentation, we also provide a deeper insight into our concept filtering heuristic to accelerate DD, abbreviated as DDCF (Diverse Density with Concept Filtering), which proves itself to be suitable for POMDPs with landmarks. DDCF outperforms its antecedent in terms of computation speed and solution quality without loss of generality.
The methods are empirically shown to be effective via extensive experimentation on a number of known and newly introduced problems with hidden state, and the results are discussed.