Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T15:14:57.597Z Has data issue: false hasContentIssue false

Hedging Adverse Bioclimatic Conditions Employing a Short Condor Position*

Published online by Cambridge University Press:  08 June 2012

Don Cyr
Affiliation:
Faculty of Business, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1, Tel: 905–688–5550 (ext 3136), email: [email protected] (contact author).
Martin Kusy
Affiliation:
Department of Finance, Operations and Information Systems, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1, Tel: 905–688–5550 (ext 3921),[email protected]
Anthony B. Shaw
Affiliation:
Department of Geography, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1, Tel: 905–688–5550 (ext 3866), email: [email protected]

Abstract

Weather derivatives are a relatively new form of financial security, providing firms with the ability to hedge the impact of weather related risks to their activities. Participants in the energy industry have employed standardized temperature contracts trading on organized exchanges since 1999, and the availability and use of non-standardized contracts designed for specialized weather related risks is growing dramatically. The primary goal of this paper is to consider the potential design and use of a weather contract to hedge the risks faced in viticulture as measured by bioclimatic indices. Specifically we examine the Winkler and Huglin bioclimatic indices over a 43 year period for the Niagara region of Ontario, Canada's largest wine producing region, and identify a mixed jump diffusion stochastic process for cumulative growing season index values. We then employ Monte Carlo simulation to derive a range of benchmark prices for a “short condor” contract employing the Huglin index as the underlying variable. The results show that valuable hedging opportunities can be provided by such contracts. (JEL Classification: G13, G32, Q14, Q51, Q54)

Type
Articles
Copyright
Copyright © American Association of Wine Economists 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ait-Sahalia, Y. (2004). Disentangling diffusion from jumps. Journal of Financial Economics, 74, 487528.CrossRefGoogle Scholar
Alaton, P., Djehiche, B. and Stillberger, D. (2002). On modelling and pricing weather derivatives. Applied Mathematical Finance, 9, 120.CrossRefGoogle Scholar
Amerine, M. A. and Winkler, A.L. (1944), Composition and quality of must and wines of California grapes. Hilgardia, 15, 493675.CrossRefGoogle Scholar
Ashenfelter, O., Ashmore, D. and Lalonde, A. (1995). Bordeaux wine vintage quality and the weather, Chance, 8(4), 714.CrossRefGoogle Scholar
Babeau, G., Morlat, R., Asselin, C., Jacquet, A. and Pinard, C. (1998) Comportement du cépage cabernet franc dans différents terroirs du Val de Loire. Incidence de la précocité sur la composition de la vendange en année climatique normale (exemple de 1988). Journal International des Sciences de la Vigne et du Vin, 32, 6981.Google Scholar
Beech, M. (2007). Icewine fetches a cool $30, 000. St. Catharines Standard, January 12th, A1.Google Scholar
Blanco-Ward, D., Garcia Queijeiro, J.M. and Jones, G.V. (2007) Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis 46 (2), 6370.Google Scholar
Branas, J. (1974). Viticulture. Montepellier: Déhan.Google Scholar
Branas, J., Bernon, G., Levadoux, L. (1946). Élements de Viticultura Générale. Bordeaux: Déhan.Google Scholar
Cao, M. and Wei, J. (2004). Weather derivatives valuation and market price of risk. The Journal of Futures Markets, 24, 10651089.CrossRefGoogle Scholar
Campbell, S. and Diebold, F.X. (2005). Weather forecasting for weather derivatives. Journal of the American Statistical Association, 100, 616.Google Scholar
Chen, G., Roberts, M.C. and Thraen, C.S. (2006). Managing dairy profit risk using weather derivatives. Journal of Agricultural and Resource Economics, 31, 653666.Google Scholar
Cyr, D. and Kusy, M. (2007). Canadian icewine production: A case for the use of weather derivatives, Journal of Wine Economics, 2(1), 123.Google Scholar
Davis, M. (2001). Pricing weather derivatives by marginal value. Quantitative Finance, 1, 305308.Google Scholar
DeBare, I. (2007). Rain or shine, they aid business climate. San Francisco Chronicle, June 6, 2007, C1.Google Scholar
Finnegan, J. (2005). Weather or not to hedge. Financial Engineering News, 44, 13.Google Scholar
Finnis, J., Holland, M.M., Serreze, M.C. and Cassano, J.J. (2007). Response of northern hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by CCSM3. Journal of Geophysical Research, 112, G04S42.CrossRefGoogle Scholar
Galet, P. (1993). Précis de Viticulture. Montpellier: Déhan.Google Scholar
Geman, H. and Leonardi, M. (2005). Alternative approaches to weather derivatives pricing. Managerial Finance, 31, 4672.CrossRefGoogle Scholar
Gladstones, J. (1992). Viticulture and Environment. Adelaide: Winetitles.Google Scholar
Haeger, J.W. and Storchmann, K. (2006). Prices of American pinot noir wines: climate, craftsmanship, critics. Agricultural Economics, 35, 6778.CrossRefGoogle Scholar
Hanley, M. (1999). Hedging the force of nature. Risk Professional, 1, 2125.Google Scholar
He, C., Kennedy, J. S., Coleman, T. F., Forsyth, P. A., Li, Y. and Vetzal, K. (2006). Calibration and hedging under jump diffusion. Review of Derivatives Research, 9, 136.Google Scholar
Hidalgo, L. (2002). Tratado de Viticulture General. Madrid: Ediciones Multi-Prensa.Google Scholar
Huglin, P. (1978). Nouveau mode d'évaluation des possibilités héliothermiques d'un milieu viticole. Comptes-Rendus de l'Academie d'Agriculture de France, 11171126.Google Scholar
Jackson, D. and Schuster, D. (1987). Production of Grapes & Wines in Cool Climates. Wellington, New Zealand: Butterworths of New Zealand.Google Scholar
Jackson, D. I. and Spurling, M.B. (1995). Climate and viticulture in Australia. In: Coomb, B.G. and Dry, P.R. (eds.), Viticulture. Adelaide: Winetitles, 91118.Google Scholar
Jewson, S. and Brix, A. (2005). Weather Derivative Valuation: The Meteorological, Statistical, Financial and Mathematical Foundations. Cambridge and New York: Cambridge University Press.Google Scholar
Jones, G.V. and Matheson, L. (2008). Historic and future climate suitability for icewine production in the Niagara region of Ontario. Working Paper, Ashland, Southern Oregon University.Google Scholar
Leggio, K.B. (2007). Using weather derivatives to hedge precipitation exposure. Managerial Finance, 33, 246252.CrossRefGoogle Scholar
Lorenz, D.H., Eichhorn, K.W., Bleiholder, H., Klose, R., Meier, U. and Weber, E. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) – Codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1, 100110.CrossRefGoogle Scholar
Purdue University (2007). Global warming likely to increase stormy weather, especially in certain US locations. ScienceDaily, December 5, 2007. Retrieved February 3, 2008, from http://www. sciencedaily.com/releases/2007/12/071204121949.html.Google Scholar
Richards, T.J., Manfredo, M.R. and Sanders, D.R. (2004). Pricing weather derivatives. American Journal of Agricultural Economics, 86, 10051017.CrossRefGoogle Scholar
Riou, C., Becker, N., Sotes-Ruiz, V., Gomez-Miguel, V., Carbonneau, A., Panagiotu, M., Calo, A., Costacurta, A., Castro de, R., Pinto, A., Lopes, C., Carneiro, L. and Climaco, P. (1994). Le Déterminisme Climatique de la Maturation du Raisin: Application au Zonage de la Teneur en Sucre dans la Communauté Européenne. Office des Publications Officielles des Communautés Européennes, Luxembourg.Google Scholar
Shaw, A.B. (2005). The Niagara Peninsula viticultural area: a climatic analysis of Canada's largest wine region. Journal of Wine Research, 16, 85103.CrossRefGoogle Scholar
Szabo, J. (2008). 20 years of Canadian icewine. Retrieved on November 24th, 2008 from http://www.dine.to/establishment_review_page.php?RecordID=335Google Scholar
Tonietto, J. (1999). Les Macroclimats Viticoles Mondiaux et l'Influence du Mésoclimat sur la Typicité de la Syrah et du Muscat de Hambourg dans le Sud de la France: Méthodologie de Caráctérisation. Thèse Doctorat. Ecole Nationale Supérieure Agronomique, Montpellier.Google Scholar
Tonietto, J. and Carbonneau, A. (2004). A multicriteria climatic classification system for grapegrowing regions worldwide. Agricultural and Forest Meteorology, 124, 8197.Google Scholar
Weather Risk Management Association (2008). Great Weather Risk Management Transactions. Retrieved March 1, 2008 from http://www.wrma.org/risk_transactions.html.Google Scholar
Winkler, A.J. (1962). General Viticulture. Berkeley, California: University of California Press.Google Scholar
Wei, J. (2002). Weather derivatives; a truly alternative asset class for investors. Canadian Investment Review, Spring, 51.Google Scholar
Yoo, S. (2003). Weather derivatives and seasonal forecast. Working Paper, Cornell University.Google Scholar