Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T20:49:41.423Z Has data issue: false hasContentIssue false

Ungulate biomass across a rainfall gradient: a comparison of data from neotropical and palaeotropical forests and local analyses in Mexico

Published online by Cambridge University Press:  08 December 2009

Salvador Mandujano*
Affiliation:
Departamento de Biodiversidad y Ecología Animal, Instituto de Ecología A. C., Km 2.5 Carret. Ant. Coatepec No. 351, Congregación del Haya, Xalapa 91070, Veracruz, México
Eduardo J. Naranjo*
Affiliation:
Departamento de Ecología y Sistemática Terrestres, El Colegio de la Frontera Sur, AP 63, San Cristóbal de Las Casas, Chiapas 29290, México
*
1Corresponding author. Email: [email protected]

Abstract:

Using a data set from 36 studies, we evaluated variation in ungulate biomass across a rainfall gradient using polynomial models, aiming to: (1) compare neotropical and palaeotropical dry and wet forests as well as African savannas; and (2) evaluate the usefulness of polynomial models to predict ungulate biomass at neotropical sites using data from a dry forest (Chamela-Cuixmala Biosphere Reserve, CCBR) and a wet forest (Montes Azules Biosphere Reserve, MABR) in Mexico. Our results showed that an overestimation of expected ungulate biomass can be obtained for some tropical forests if data from African savannas are included in the model. This overestimation was particularly high for predicted ungulate biomass in neotropical dry forests. These ecosystems sustain different ungulate biomass values even when rainfall is similar. This was particularly true for some tropical dry forests and savannas. Rainfall predicted the expected ungulate biomass in neotropical ecosystems relative to that of palaeotropical ones under similar precipitation regimes, but did not correctly predict the observed ungulate biomass at local level if data outside the Neotropics are included in the model. This was more evident when we compared observed biomass against predicted biomass in the tropical dry forest of CCBR, while some polynomial models successfully predicted the observed biomass for the tropical wet forest of MABR. Factors such as Pleistocene extinctions and the absence of large, native grazers (i.e. Bovidae) that have kept ungulate richness and standing biomass relatively low in neotropical forests should be accounted for when comparing data sets from different regions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AQUINO, R., TERRONES, C. & TERRONES, W. 2007. Assessing impact of hunting mammals in Alto Itaya river basin, Peruvian Amazon. Revista Peruana Biología 14:181186.CrossRefGoogle Scholar
ARROYO-CABRALES, J., POLACO, O. J. & JOHNSON, E. 2007. An overview of the Quaternary mammals from Mexico. Cours Forschungs-Institut Senckenberg 259:191203.Google Scholar
BAGCHI, S., GOYAL, S. P. & SANKAR, K. 2004. Herbivore density and biomass in a semi-arid tropical dry deciduous forest of western India. Journal of Tropical Ecology 20:475478.CrossRefGoogle Scholar
BARNES, R. F. & LAHM, S. A. 1997. An ecological perspective on human densities in central African forests. Journal of Applied Ecology 34:245260.CrossRefGoogle Scholar
BARNOSKY, A. D., KOCH, P. L., FERANEC, R. S., WING, S. L. & SHABEL, A. B. 2004. Assessing the causes of late Pleistocene extinctions on the continents. Science 306:7075.CrossRefGoogle ScholarPubMed
BISWAS, S. & SANKAR, K. 2002. Prey abundance and food habit of tigers (Panthera tigris tigris) in Pech National Park, Madhya Pradesh, India. Journal of Zoology, London 256:411420.CrossRefGoogle Scholar
BODMER, R. E. 1989. Ungulate biomass in relation to feeding strategy within Amazonian forests. Oecologia 81:547550.CrossRefGoogle ScholarPubMed
BODMER, R. E. 1990. Ungulate frugivores and the browser-grazer continuum. Oikos 57:319325.CrossRefGoogle Scholar
BODMER, R. E. & ROBINSON, J. G. 2004. Evaluating the sustainability of hunting in the Neotropics. Pp. 299323 in Silvius, K. M., Bodmer, R. E. & Fragoso, J. M. (eds.). People in nature: wildlife conservation in South and Central America. Columbia University Press, New York.CrossRefGoogle Scholar
BODMER, R. E., FA, T. G., MOYA, L. I. & GILL, R. 1994. Managing wildlife to conserve Amazonian forests: population biology and economic considerations of game hunting. Biology Conservation 6:2935.CrossRefGoogle Scholar
BODMER, R. E., EISENBERG, J. F. & REDFORD, K. H. 1997. Hunting and the likelihood of extinction of Amazonian mammals. Conservation Biology 11:460466.CrossRefGoogle Scholar
CAMPBELL, K. & HOFER, H. 1995. People and wildlife: spatial dynamics and zones of interaction. Pp. 534570 in Sinclair, A. R. E. & Arcese, P. (eds.). Serengeti II. Chicago University Press, Chicago.Google Scholar
CANNON, M. D. 2004. Geographic variability in North American mammal community richness during the terminal Pleistocene. Quaternary Science Reviews 23;10991123.CrossRefGoogle Scholar
CARRANZA-MONTAÑO, M. A., SÁNCHEZ-VELÁSQUEZ, L. R., PINEDA-LÓPEZ, M. R. & CUEVAS-GUZMÁN, R. 2003. Forage quality and potential of species from the sierra of Manantlan (Mexico) tropical dry forest. Agrociencia 37:203210.Google Scholar
COE, M. J., CUMMING, D. H. & PHILLIPSON, J. 1976. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22;341354.CrossRefGoogle ScholarPubMed
COSTA, A. N., VASCONCELOS, H. L., VEIRA-NETO, E. H. M. & BRUNA, E. M. 2008. Do herbivores exert top-down effects in neotropical savannas? Estimates of biomass consumption by leaf-cutter ants. Journal of Vegetation Science 19:849854.CrossRefGoogle Scholar
DE VIVO, M. & CARMIGNOTTO, A. P. 2004. Holocene vegetation change and the mammal faunas of South America and Africa. Journal of Biogeography 31:943957.CrossRefGoogle Scholar
DU TOIT, J. T. & CUMMING, D. H. M. 1999. Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodiversity & Conservation 8:16431661.CrossRefGoogle Scholar
EAST, R. 1984. Rainfall, soil nutrient status and biomass of large African savanna mammals. African Journal of Ecology 22:245270.CrossRefGoogle Scholar
EISENBERG, J. F. 1980. The density and biomass of tropical mammals. Pp. 3555 in Soulé, M. E. & Wilcox, B. A. (eds.). Conservation biology: an evolutionary – ecological perspective. Sinauer Associates Inc., Sunderland.Google Scholar
FISCHER, F. & LINSENMAIR, K. E. 2001. Decreases in ungulate population densities: examples from the Comoé National Park, Ivory Coast. Biology Conservation 101:131135.CrossRefGoogle Scholar
FRANK, D. A., McNAUGHTON, S. J. & TRACY, B. F. 1998. The ecology of the Earth's grazing ecosystems. BioScience 48:513521.CrossRefGoogle Scholar
FRITZ, H. & DUNCAN, P. 1994. On the carrying capacity for large ungulates of African savanna ecosystems. Proceedings of the Royal Society of London B 256:7782.Google ScholarPubMed
FRITZ, H., DUNCAN, P., GORDON, I. J. & ILLIUS, A. W. 2002. Megaherbivores influence trophic guilds structure in African ungulate communities. Oecologia 131:620625.CrossRefGoogle ScholarPubMed
GAIDET, N. & GAILLARD, J. M. 2008. Density-dependent body condition and recruitment in a tropical ungulate. Canadian Journal of Zoology 86:2432.CrossRefGoogle Scholar
HAUGAASEN, T. & PERES, A. 2005. Mammal assemblage structure in Amazonian flooded and unflooded forests. Journal of Tropical Ecology 21:133145.CrossRefGoogle Scholar
JANIS, C. M., DAMUTH, J. & THEODOR, J. M. 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Science, USA 97:78997904.CrossRefGoogle ScholarPubMed
JANSON, C. H. & EMMONS, L. 1990. Ecological structure of the non-flying mammal community in Cocha Cashu Biological Station, Manu National Park, Peru. Pp. 339357 in Gentry, A. (eds.). Four neotropical rainforests. Yale University Press, New Haven.Google Scholar
KAHARANANGA, J. 1981. Population estimates, densities and biomass of large herbivores in Simanjiro Plains, Northern Tanzania. African Journal of Ecology 19:225238.CrossRefGoogle Scholar
KARANTH, K. U. & SUNQUIST, M. E. 1992. Population structure, density and biomass of large herbivores in the tropical forest of Nagarahole, India. Journal of Tropical Ecology 8:2135.CrossRefGoogle Scholar
KHAN, J. A., CHELLAM, R., RODGERS, W. A. & JOHNSINGH, A. J. T. 1996. Ungulate densities and biomass in the tropical dry deciduous forest of Gir, Gujarat, India. Journal of Tropical Ecology 12:149162.CrossRefGoogle Scholar
KLOP, E. & PRINS, H. H. T. 2008. Diversity and species composition of West African ungulate assemblages: effects of fire, climate and soil. Global Ecology and Biogeography 17:778787.CrossRefGoogle Scholar
MACFADDEN, B. J. 2006. Extinct mammalian biodiversity of the ancient New World tropics. Trends in Ecology and Evolution 21:157165.CrossRefGoogle ScholarPubMed
MADHUSUDAN, M. D. 2004. Recovery of wild large herbivores following livestock decline in a tropical Indian wildlife reserve. Journal of Applied Ecology 41:858869.CrossRefGoogle Scholar
MANDUJANO, S. 2007. Carrying capacity and potential production of ungulates for human use in a Mexican tropical dry forest. Biotropica 39:519524.CrossRefGoogle Scholar
McNAUGHTON, S. J., SALA, O. E. & OESTERHELD, M. 1993. Comparative ecology of African and South American arid to subhumid ecosystems. Pp. 548567 in Goldblatt, P. (ed.). Biological relationships between Africa and South America. Yale University Press, New Haven.CrossRefGoogle Scholar
MENDES-PONTES, A. R., CHIVERS, D. J. & LEE, P. C. 2007. Effect of biomass on assemblages of large mammals in a seasonally dry forest in the Brazilian Amazonia. Journal of Zoology 271:278287.CrossRefGoogle Scholar
MIZUTANI, F. 1999. Biomass density of wild and domestic herbivores and carrying capacity on a working ranch in Laikipia District, Kenya. African Journal Ecology 37:226240.CrossRefGoogle Scholar
MORGAN, B. J. 2007. Group size, density and biomass of large mammals in the Réserve de Faune du Petit Loango, Gabon. African Journal of Ecology 45:508518.CrossRefGoogle Scholar
NARANJO, E. J. 2007. Uso sustentable y conservación de ungulados silvestres en la Selva Lacandona, Chiapas, México. Pp. 183196 in Sánchez-Rojas, G. & Rojas-Martínez, A. (eds.). Tópicos en sistemática, biogeografía, ecología y conservación de mamíferos. Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, México.Google Scholar
NARANJO, E. J. & BODMER, R. E. 2007. Source-sink systems of hunted ungulates in the Lacandon Forest, Mexico. Biology Conservation 138:412420.CrossRefGoogle Scholar
NARANJO, E. J., GUERRA, M., BODMER, R. E. & BOLAÑOS, J. E. 2004a. Subsistence hunting by three ethnic groups of the Lacandon forest, México. Journal of Ethnobiology 24:233253.Google Scholar
NARANJO, E. J., BOLAÑOS, J. E., GUERRA, M. M. & BODMER, R. E. 2004b. Hunting sustainability of ungulates populations in the Lacandon forest, México. Pp. 324343 in Silvius, K. M., Bodmer, R. E. & Fragoso, J. M. (eds.). People in nature: wildlife conservation in South and Central America, Columbia University Press, New York.CrossRefGoogle Scholar
NOVACK, A. J., MAIN, M. B., SUNQUIST, M. E. & LABISKY, R. F. 2005. Foraging ecology of jaguar (Panthera onca) and puma (Puma concolor) in hunted and non-hunted sites within the Maya Biosphere Reserve, Guatemala. Journal of Zoology 267:167178.CrossRefGoogle Scholar
OATES, J. F., WHITESIDES, G. H., DAVIES, A. G., WATERMAN, P. G., GREEN, S. M., DASILVA, G. L. & MOLE, S. 1990. Determinants of variation in tropical forest primate biomass: new evidence from West Africa. Ecology 71:328343.CrossRefGoogle Scholar
OGUTU, J. O. & OWEN-SMITH, N. 2003. ENSO, rainfall, and temperature influences on extreme population declines among African savanna ungulates. Ecology Letters 6:412419.CrossRefGoogle Scholar
OLFF, H., RITCHIE, M. E. & PRINS, H. H. T. 2002. Global environmental controls of diversity in large herbivores. Nature 415:901904.CrossRefGoogle ScholarPubMed
PERES, C. A. 1991. Humboldt's woolly monkeys decimated by hunting in Amazonian. Oryx 25:8995.CrossRefGoogle Scholar
PLUMPTRE, A. J. & HARRIS, S. 1995. Estimating the biomass of large mammalian herbivores in a tropical montane forest: a method of faecal counting that avoids assuming a ‘steady state’ system. Journal of Applied Ecology 32:111120.CrossRefGoogle Scholar
POLISAR, J., MAXIT, I., SCOGNAMILLO, D., FARREL, L., SUNQUIST, M. E. & EISENBERG, J. F. 2003. Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biology Conservation 109:297310.CrossRefGoogle Scholar
PRINS, H. H. T. & REITSMA, J. M. 1989. Mammalian biomass in an African equatorial rain forest. Journal of Animal Ecology 58:851861.CrossRefGoogle Scholar
RANNESTAD, O. T., DANIELSEN, T., MOE, S. R. & STOKKE, S. 2006. Adjacent pastoral areas support higher densities of wild ungulates during the wet season than the Lake Mburo National Park in Uganda. Journal of Tropical Ecology 22:675683.CrossRefGoogle Scholar
REDFORD, K. H. 1992. The empty forest. Bioscience 42:412422.CrossRefGoogle Scholar
ROBINSON, J. G. & BENNETT, E. L. 2004. Having your wildlife and eating it too: an analysis of hunting sustainability across tropical ecosystems. Animal Conservation 7:397408.CrossRefGoogle Scholar
RUNYORO, V. A., HOFER, H., CHAUSIN, E. B. & MOEHLMAN, P. D. 1995. Long-term trends in the herbivore populations of the Ngorongoro Crater, Tanzania. Pp. 146168 in Sinclair, A. R. E. & Arcese, P. (eds.). Serengeti II. Chicago University Press, Chicago.Google Scholar
SÆTHER, B. E. 1997. Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution 12:143149.CrossRefGoogle ScholarPubMed
SCHALLER, G. B. 1972. The Serengeti Lion: a study of predator–prey relations. University of Chicago Press, Chicago.Google Scholar
SCHALLER, G. B. 1983. Mammals and their biomass on a Brazilian ranch. Arquivos Zoology 31:136.CrossRefGoogle Scholar
SRIKOSAMATARA, S. 1993. Density and biomass of large herbivores and other mammals in a dry tropical forest, western Thailand. Journal of Tropical Ecology 9:3343.CrossRefGoogle Scholar
STELFOX, J. G., PEDEN, D. G., EPP, H., HUDSON, R. J., MBUGUA, S. W., AGATSIVA, J. L. & AMUYUNZU, C. L. 1986. Herbivore dynamics in Southern Narok, Kenya. Journal of Wildlife Management 50:339347.CrossRefGoogle Scholar
VALEIX, S., FRITZ, H., DUBOIS, S., KANENGONI, K., ALLEAUME, S. & SÄID, S. 2007. Vegetation structure and ungulate abundance over a period of increasing elephant abundance in Hwange National Park, Zimbabwe. Journal of Tropical Ecology 23:8793.CrossRefGoogle Scholar
WEBER, M., GARCÍA-MARMOLEJO, G. & REYNA-HURTADO, R. 2006. The tragedy of the commons: wildlife management units in southeastern México. Wildlife Society Bulletin 34:480488.CrossRefGoogle Scholar
WHITE, L. J. T. 1994. Biomass of rain forest mammals in the Lopé Reserve, Gabon. Journal of Animal Ecology 63:499512.CrossRefGoogle Scholar
WILSON, D. E. & REEDER, D. A. M. 2005. Mammal species of the world: a taxonomic and geographical reference. The Smithsonian Institution Press, Washington, DC.CrossRefGoogle Scholar