Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T21:28:15.821Z Has data issue: false hasContentIssue false

Slope orientation enhances the nurse effect of a paramo shrub, Hypericum irazuense (Hypericaceae) in Costa Rica

Published online by Cambridge University Press:  01 May 2009

Alejandro G. Farji-Brener*
Affiliation:
Lab. Ecotono, CRUB-UNCOma, INIBIOMA-Conicet. Pasaje Gutierrez 1125, (8400) Bariloche, Argentina
Federico A. Chinchilla
Affiliation:
Estación Biológica Monteverde, Puntarenas, Costa Rica
Ainhoa Magrach
Affiliation:
Facultad de Biología, Depto. De Biología Celular y Ecología, Univ. de Santiago de Compostela, España
Víctor Romero
Affiliation:
Lab. De Ecología Evolutiva, Universidad Simón Bolivar, Caracas, Venezuela
Marcos Ríos
Affiliation:
Universidad de la Amazonía Peruana, Iquitos, Perú
Marianela Velilla
Affiliation:
Guido Spano 2820, Asunción, Paraguay
José Manuel Serrano
Affiliation:
Instituto de Ecología AC, Xalapa, Veracruz, México
Sabrina Amador-Vargas
Affiliation:
Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
*
1Corresponding author. Email: [email protected]; [email protected]

Extract

The nurse effect is a positive interaction in which one plant (the nurse) provides conditions that enhance the establishment and growth of another plant species (Callaway 1995). Increased environmental severity appeared to increase the strength of nurse effects (Brooker et al. 2008, Lortie & Callaway 2006). On the one hand, the impact of the nurse effect depends on the magnitude of the environmental changes exerted by the nurse plant. On the other hand, the impact could depend on the number of plant species in the regional pool that respond to such changes. For example, better conditions beneath the crowns of nurse plants might allow the occurrence of species that are sensitive to environmental stress and that occur infrequently in open areas. Thus, if a nurse plant modulates environmental conditions that are critical for the persistence of other plant species, it seems likely that such nurse plants would have greater effects in stressful habitats, where they cause relatively larger environmental mitigation (Badano et al. 2006, Callaway et al. 2002).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BADANO, E. & CAVIERES, L. 2006. Impacts of ecosystem engineers on community attributes: effects of cushion plants at different elevations of the Chilean Andes. Diversity and Distribution 12:388396.Google Scholar
BADANO, E., CAVIERES, L., MOLINA-MONTENEGRO, M. & QUIROZ, C. 2005. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. Journal of Arid Environments 62:93108.CrossRefGoogle Scholar
BADANO, E., JONES, C., CAVIERES, L. & WRIGHT, J. 2006. Assessing impacts of ecosystems engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant. Oikos 115:369385.CrossRefGoogle Scholar
BROOKER, J., MAESTRE, F., CALLAWAY, R., LORTIE, C., CAVIERES, L., KUNSTLER, G., LIANCOURT, P., TIELBOERGE, K., TRAVIS, J., ANTHELME, F., ARMAS, C., COLL, L., CORCKET, E., DELZON, S., FOREY, E., KIKVIDZE, Z., OLOFSSON, J., PUGNAIRE, F., QUIROZ, L., SACCONE, P., SCHIFFERS, K., SIFAN, M., TOUZARD, B. & MICHALET, R. 2008. Facilitation in plant communities: the past, the present, and the future. Journal of Ecology 96:1834.Google Scholar
CALLAWAY, R. 1995. Positive interactions between plants. Botanical Review 61:306349.Google Scholar
CALLAWAY, R., BROOKER, R., CHOLER, P., KIKVIDZE, Z., LORTIE, C. J., MICHALET, R., PAOLINI, L., PUGNAIRE, F., NEWINGHAM, B., ASCHEHOUG, E., ARMAS, C., KIKIDZE, D. & COOK, B. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844848.Google Scholar
EASDALE, T., ALBÁN, N., BAKER, B., VÁZQUEZ, C., GALLEGO, M. & RADA, F. 1999. Importancia de la exposición sobre la composición y fisonomía de comunidades vegetales de páramo. Pp. 9195 in Farji-Brener, A. G. & Barrantes, G. (eds.). Ecología tropical y conservación. OTS, Costa Rica.Google Scholar
GÓMEZ-APARICIO, L., ZAMORA, J., GÓMEZ, J., HÓDAR, J., CASTRO, J. & BARAZA, E. 2004. Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecological Application 14:11281138.CrossRefGoogle Scholar
HOLZAPFEL, C., TILEBORGER, K., PARAG, H., KIGEL, J. & STERNBERG, M. 2006. Annual plant-shrub interactions along an aridity gradient. Basic Applied Ecology 7:268279.Google Scholar
KAPPELLE, M. & HORN, S. 2005. Páramos de Costa Rica. Inbio, Costa Rica. 767 pp.Google Scholar
KÖRNER, C. 1999. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin. 338 pp.Google Scholar
LORTIE, C. & CALLAWAY, R. 2006. Re-analysis of meta-analysis: support for the stress-gradient hypothesis. Journal of Ecology 94:716.CrossRefGoogle Scholar
MEDINA, B., RIBEIRO, K. & SCARANO, F. 2006. Plant-plant and plant-topography interactions on a rock outcrop at high altitude in southern Brazil. Biotropica 38:2734.Google Scholar
PUGNAIRE, F. & LUQUE, M. 2001. Changes in plant interactions along a gradient of environmental stress. Oikos 93:4249.CrossRefGoogle Scholar
TEWKSBURY, J. & LLOYD, J. 2001. Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127:425434.CrossRefGoogle ScholarPubMed