Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T19:47:35.244Z Has data issue: false hasContentIssue false

Role of body size in activity budgets of mammals in the Western Ghats of India

Published online by Cambridge University Press:  08 June 2015

Tharmalingam Ramesh*
Affiliation:
Wildlife Institute of India, P.O. Box 18, Chandrabani, Dehra Dun-248001, Uttarakhand, India School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, KwaZulu-Natal – 3209, South Africa
Riddhika Kalle
Affiliation:
Wildlife Institute of India, P.O. Box 18, Chandrabani, Dehra Dun-248001, Uttarakhand, India School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, KwaZulu-Natal – 3209, South Africa
Kalyanasundaram Sankar
Affiliation:
Wildlife Institute of India, P.O. Box 18, Chandrabani, Dehra Dun-248001, Uttarakhand, India
Qamar Qureshi
Affiliation:
Wildlife Institute of India, P.O. Box 18, Chandrabani, Dehra Dun-248001, Uttarakhand, India
*
1Corresponding author. Email: [email protected]

Abstract:

Body size in animals is an important trait affecting species niche differentiation and restricting similarity. Using camera-trap data over 2008–2010, we used photo-captures from 50 cameras spread throughout Mudumalai Tiger Reserve (Western Ghats, India) to assess the activity budgets of 21 mammal species ranging in body size from 1 kg to 2088 kg. Large carnivores were mostly cathemeral whereas small cat and civet species were purely nocturnal. Mongoose species were mainly diurnal possibly due to their terrestrial feeding habits and reduce competition with other sympatric small carnivores. All large and small-bodied herbivores were cathemeral and nocturnal respectively, whereas medium-sized herbivores were active during the day. Overall, small mammals tended to be mostly nocturnal, whereas large mammals were cathemeral mainly due to energy requirements and other ecological constraints. Body size showed significant negative relationship with mean vector length (clustering of activity in time) thus implying that the daily amount of time being active increased with body size. The shorter activity time (12 h) in small mammals resulted in higher mean vector length probably to utilize the available time to fulfil energy needs. The observed cathemeral activity in large mammals may be associated with travel over larger areas to acquire large quantities of food therefore they are active for a longer duration. Our results clearly support the allometric relationship between body size and activity budgets in mammals and its association with niche differentiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARSENAULT, R. & OWEN-SMITH, N. 2008. Resource partitioning by grass height among grazing ungulates does not follow body size relation. Oikos 117:17111717.CrossRefGoogle Scholar
BELL, R. H. V. 1971. A grazing ecosystem in the Serengeti. Scientific American 224:8693.CrossRefGoogle Scholar
BELOVSKY, G. E. & SLADE, J. B. 1986. Time budgets of grassland herbivores: body size similarities. Oecologia 70:5362.CrossRefGoogle ScholarPubMed
BELTRAN, J. F. & DELIBES, M. 1994. Environmental determinants of circadian activity of free-ranging Iberian lynxes. Journal of Mammalogy 75:382393.CrossRefGoogle Scholar
BLOCH, C. P., STEVENS, R. D. & WILLIG, M. R. 2011. Body size and resource competition in New World bats: a test of spatial scaling laws. Ecography 34:460468.CrossRefGoogle Scholar
BONNER, J. T. 2006. Why size matters: from bacteria to blue whales. Princeton University Press, Princeton. 176 pp.Google Scholar
CALDER, W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge. 448 pp.Google Scholar
CARBONE, C., MACE, G. M., ROBERTS, S. C. & MACDONALD, D. W. 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402:286288.CrossRefGoogle ScholarPubMed
CARBONE, C., TEACHER, A. & ROWCLIFFE, J. M. 2007. The costs of carnivory. PLoS Biology 5:e22.CrossRefGoogle ScholarPubMed
CARO, T. M. & STONER, C. J. 2003. The potential for interspecific competition among African carnivores. Biological Conservation 110: 6775.CrossRefGoogle Scholar
CHAMPION, H. G. & SETH, S. K. 1968. A revised survey of the forest types of India. The Manager of Publications, Government of India, New Delhi. 404 pp.Google Scholar
DEMETRIUS, L., LEGENDRE, S. & HARREMÖES, P. 2009. Evolutionary entropy: a predictor of body size, metabolic rate and maximal life span. Bulletin of Mathematical Biology 71:800818.CrossRefGoogle ScholarPubMed
DEMMENT, M. W. & VAN SOEST, P. J. 1981. Body size, digestive capacity and feeding strategies of herbivores. Winrock International Livestock Research Publication, Morrilton. 66 pp.Google Scholar
DEMMENT, M. W. & VAN SOEST, P. J. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist 125:641672.CrossRefGoogle Scholar
DIAL, K. P., GREENE, E. & IRSCHICK, D. J. 2008. Allometry of behavior. Trends in Ecology and Evolution 23:394401.CrossRefGoogle ScholarPubMed
DURANT, S. M. 1998. Competition refuges and coexistence: an example from Serengeti carnivores. Journal of Animal Ecology 67:370386.CrossRefGoogle Scholar
DU TOIT, J. T. & YETNIAN, C.A. 2005. Effects of body size on the diurnal activity of African browsing ruminants. Oecologia 143:317325.CrossRefGoogle ScholarPubMed
GARLAND, T. J. R. 1983. Scaling the ecological cost of transport to body mass in terrestrial mammals. American Naturalist 121:571587.CrossRefGoogle Scholar
GLAZIER, D. S. 2005. Beyond the ‘‘3⁄4-power law’’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Review 80:611662.CrossRefGoogle ScholarPubMed
GORMAN, M. L., MILLS, M. G., RAATH, J. P. & SPEAKMAN, J. R. 1998. High hunting costs make African wild dogs vulnerable to kleptoparasitism by hyaenas. Nature 391:479481.CrossRefGoogle Scholar
GOSZCZYNSKI, J. 1986. Locomotor activity of terrestrial predators and its consequences. Acta Theriologica 31:7995.CrossRefGoogle Scholar
GUEVARA, J., GONZAGA, M. O., VASCONCELLOS-NETO, J. & AVILÉS, L. 2011. Sociality and resource use: insights from a community of social spiders in Brazil. Behavioural Ecology 22:630638.CrossRefGoogle Scholar
HARMSEN, B. J., FOSTER, R. J., SILVER, S. C., OSTRO, L. E. T. & DONCASTER, C. P. 2011. Jaguar and puma activity patterns in relation to their main prey. Mammalian Biology 76:320324.CrossRefGoogle Scholar
HASKELL, J. P., RITCHIE, M. E. & OLFF, H. 2002. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527530.CrossRefGoogle ScholarPubMed
ILLIUS, A. W. & GORDON, I. J. 1987. The allometry of food intake in grazing ruminants. Journal of Animal Ecology 56:989999.CrossRefGoogle Scholar
ILLIUS, A. W. & GORDON, I. J. 1992. Modelling the nutritional ecology of ungulate herbivores: evolution of body size and competitive interactions. Oecologia 89:428434.CrossRefGoogle ScholarPubMed
JARMAN, P. J. 1974. The social organisation of antelope in relation to their ecology. Behaviour 48:215266.CrossRefGoogle Scholar
JETZ, W., CARBONE, C., FULFORD, J. & BROWN, J. H. 2004. The scaling of animal space use. Science 306:266268.CrossRefGoogle ScholarPubMed
JOHNSINGH, A. J. T. 1981. Ecology and behaviour of the dhole with special reference to prey–predator relation in Bandipur. Ph.D. thesis, Madurai University, Madurai, India. 306 pp.Google Scholar
JULIANO, S. A. & LAWTON, J. H. 1990. The relationship between competition and morphology II. Experiments on co-occurring dysticid beetles. Journal of Animal Ecology 59:831848.CrossRefGoogle Scholar
KALLE, R., RAMESH, T., SANKAR, K. & QURESHI, Q. 2012. Diet of mongoose in Mudumalai Tiger Reserve, southern India. Journal of Scientific Transactions in Environment and Technovation 6:4451.Google Scholar
KARANTH, K. U. & SUNQUIST, M. E. 1992. Population structure, density and biomass of large herbivores in the tropical forests of Nagarahole, India. Journal of Tropical Ecology 8:2135.CrossRefGoogle Scholar
KARANTH, K. U. & SUNQUIST, M. E. 1995. Prey selection by tiger, leopard and dhole in tropical forests. Journal of Animal Ecology 64:439450.CrossRefGoogle Scholar
KOVACH, W. L. 2011. Oriana – circular statistics for windows. Kovach Computing Services, Pentraeth. 171 pp.Google Scholar
KRONFELD-SCHOR, N. & DAYAN, T. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics 34:153181.CrossRefGoogle Scholar
LAURENSON, M. K. 1995. Behavioral costs and constraints of lactation in free-living cheetahs. Animal Behaviour 50:815826.CrossRefGoogle Scholar
LINDSTEDT, S., MILLER, B. J. & BUSKIRK, S. W. 1986. Home range, time and body size in mammals. Ecology 67:413418.CrossRefGoogle Scholar
LUCHERINI, M., REPPUCCI, J. I., WALKER, R. S., VILLALBA, M. L., WURSTTEN, A., GALLARDO, G., IRIARTE, A., VILLALOBOS, R. & PEROVIC, P. 2009. Activity pattern segregation of carnivores in the High Andes. Journal of Mammalogy 90:14041409.CrossRefGoogle Scholar
MAULFAIR, D. D., ZANTON, G. I., FUSTINI, M. & HEINRICHS, A. J. 2010. Effect of feed sorting on chewing behavior, production, and rumen fermentation in lactating dairy cows. Journal of Dairy Science 93:47914803.CrossRefGoogle ScholarPubMed
MCNAB, M. K. 1963. Bioenergetics and the determination of home range size. American Naturalist 97:133140.CrossRefGoogle Scholar
MENON, V. 2003. A field guide to Indian mammals. Dorling Kindersley India, Delhi. 201 pp.Google Scholar
MOEN, A. N. 1973. Wildlife ecology. W.H. Freeman and Company, San Francisco. 458 pp.Google Scholar
MYSTERUD, A. 1998. The relative roles of body size and feeding type on activity time of temperate ruminants. Oecologia 113:442446.CrossRefGoogle ScholarPubMed
OLFF, H., RITCHIE, M. E. & PRINS, H. H. T. 2002. Global environmental controls of diversity in large herbivores. Nature 415:901904.CrossRefGoogle ScholarPubMed
OWEN-SMITH, R. N. 1988. Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge. 369 pp.CrossRefGoogle Scholar
OWEN-SMITH, N. 2002. Adaptive herbivore ecology: from resources to populations in variable environments. Cambridge University Press, Cambridge. 374 pp.CrossRefGoogle Scholar
PETERS, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge. 344 pp.CrossRefGoogle Scholar
PRATER, S. H. 1971. The book of Indian animals. Bombay Natural History Society and Oxford University Press, Mumbai. 324 pp.Google Scholar
RAMESH, T., KALLE, R., SANKAR, K. & QURESHI, Q. 2012a. Spatio-temporal resource partition among large carnivores in relation with major prey species. Journal of Zoology 287:269275.CrossRefGoogle Scholar
RAMESH, T., KALLE, R., SANKAR, K. & QURESHI, Q. 2012b. Dietary partitioning in sympatric large carnivores in a tropical forest of Western Ghats, India. Mammal Study 37:313321.CrossRefGoogle Scholar
RAMESH, T., SANKAR, K., QURESHI, Q. & KALLE, R. 2012c. Group size, sex and age composition of chital Axis axis and sambar Rusa unicolor in a deciduous habitat of Western Ghats. Mammalian Biology 77:5379.CrossRefGoogle Scholar
ROBBINS, C. T. 1993. Wildlife feeding and nutrition. (Second edition). Academic Press, New York. 352 pp.Google Scholar
SCHALLER, G. B. 1967. The deer and the tiger. University of Chicago Press, Chicago. 370 pp.Google Scholar
SCHOENER, T. W. 1974. Resource partitioning in ecological communities. Science 185:2739.CrossRefGoogle ScholarPubMed
SWIHART, R. K., SLADE, N. A. & BERGSTROM, B. J. 1988. Relating body size to the rate of home range use in mammals. Ecology 69:393399.CrossRefGoogle Scholar
VAN SCHAIK, C. P. & GRIFFITHS, M. 1996. Activity periods of Indonesian rain forest mammals. Biotropica 28:105112.CrossRefGoogle Scholar
WARREN, P. H. & LAWTON, J. H. 1987. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 74:231235.CrossRefGoogle ScholarPubMed
WECKERLY, F. W. 2013. Conspecific body weight, food intake, and rumination time affect food processing and forage behaviour. Journal of Mammalogy 94:120126.CrossRefGoogle Scholar