Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T11:05:54.579Z Has data issue: false hasContentIssue false

Prey composition of the pitcher plant Nepenthes madagascariensis

Published online by Cambridge University Press:  28 May 2010

Katja Rembold*
Affiliation:
Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany Institute for Integrated Natural Sciences, University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany
Eberhard Fischer
Affiliation:
Institute for Integrated Natural Sciences, University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany
Markus A. Wetzel
Affiliation:
Institute for Integrated Natural Sciences, University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany
Wilhelm Barthlott
Affiliation:
Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
*
1Corresponding author. E-mail: [email protected]

Abstract:

Nepenthes madagascariensis is a carnivorous plant which captures its prey in pitcher-like leaves. It is endemic to Madagascar where it occurs along the eastern coast. Altogether 94.3% of its prey animals belong to three taxa: Formicidae (80.2%), Diptera (9.7%) and Coleoptera (4.4%). The prey compositions of the dimorphic lower and upper pitcher types differ significantly, especially in the markedly higher proportion of ants in lower pitchers and the higher number of flying insects in upper pitchers. A comparison concerning the trap frequency of taxa with literature data from Asian Nepenthes species showed that the upper pitchers of N. madagascariensis contained much higher proportions of Coleoptera, Diptera and Lepidoptera; these differences may partly be due to seasonal reasons. No significant correlation could be established between the numbers of prey items with pitcher size. This paper is the first characterization of the prey composition of the little known N. madagascariensis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADAM, J. H. 1997. Prey spectra of Bornean Nepenthes species (Nepenthaceae) in relation to their habitat. Pertanika Journal of Tropical Agricultural Science 20:121134.Google Scholar
BARTHLOTT, W., POREMBSKI, S., FISCHER, E. & GEMMEL, B. 1998. First protozoa-trapping plant found. Nature 392:447.CrossRefGoogle Scholar
BARTHLOTT, W., POREMBSKI, S., SEINE, R. & THEISEN, I. 2007. The curious world of carnivorous plants – a comprehensive guide to their biology and cultivation. Timber Press, Portland, OR. 224 pp.Google Scholar
BAUER, U., BOHN, H. F. & FEDERLE, W.2008. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. Proceedings of the Royal Society B 275:259265.Google Scholar
BOHN, H. F. & FEDERLE, W. 2004. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences USA 101:1413814143.CrossRefGoogle ScholarPubMed
CLARKE, C. M. 1997. Nepenthes of Borneo. Natural History Publications (Borneo), Kota Kinabalu. 207 pp.Google Scholar
CLARKE, C. M., BAUER, U., LEE, C. C., TUEN, A. A., REMBOLD, K. & MORAN, J. A. 2009. Tree shrew lavatories: a novel nitrogen sequestration strategy in a tropical pitcher plant. Biology Letters 5:632635.CrossRefGoogle Scholar
CLARKE, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
CLARKE, K. R. & WARWICK, R. M. 1994. Similarity-based testing for community pattern: the 2-way layout with no replication. Marine Biology 118:167176.CrossRefGoogle Scholar
CRESSWELL, J. E. 1998. Morphological correlates of necromass accumulation in the traps of an Eastern tropical pitcher plant, Nepenthes ampullaria Jack, and observations on the pitcher infauna and its reconstitution following experimental removal. Oecologia 113:383390.CrossRefGoogle ScholarPubMed
ERBER, D. 1979. Untersuchungen zur Biozönose und Nekrozönose in Kannenpflanzen auf Sumatra. Archiv für Hydrobiologie 87:3748.Google Scholar
GUENTHER, K. 1913. Die lebenden Bewohner der Kannen der insektenfressenden Pflanze Nepenthes destillatoria auf Ceylon. Zeitschrift für wissenschaftliche Insektenbiologie 9:122130, 156160, 198207.Google Scholar
HOLLANDER, M. & WOLFE, D. A. 1999. Nonparametric statistical methods. John Wiley & Sons, New York. 816 pp.Google Scholar
HUA, Y. & LI, H. 2005. Food web and fluid in pitchers of Nepenthes mirabilis in Zhuhai, China. Acta Botanica Gallica 152:165175.CrossRefGoogle Scholar
HURLBERT, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187211.CrossRefGoogle Scholar
IHAKA, R. & GENTLEMAN, R. 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5:299314.Google Scholar
JEBB, M. 1989. Some observations on Nepenthes in Papua New Guinea (1987). Pp. 314316 in Juniper, B. E., Robins, R. J. & Joel, D. M. (eds). The carnivorous plants. Academic Press, London.Google Scholar
JEBB, M. & CHEEK, M. 2001. Nepenthaceae. Flora Malesiana 15:1157.Google Scholar
JUNIPER, B. E., ROBINS, R. J. & JOEL, D. M. 1989. The carnivorous plants. Academic Press, London. 353 pp.Google Scholar
KRUSKAL, J. B. & WISH, M. 1978. Multidimensional scaling. Sage University Paper series on Quantitative Applications in the Social Sciences. Sage Publications, Newbury Park.Google Scholar
LLOYD, F. E. 1942. The carnivorous plants. Chronica Botanica Company, Waltham. 352 pp.Google Scholar
MCPHERSON, S. 2009. Pitcher plants of the Old World. Redfern Natural History Productions, Poole. 1399 pp.Google Scholar
MEIMBERG, H., WISTUBA, A., DITTRICH, P. & HEUBL, G. 2001. Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequence data. Plant Biology 3:164175.CrossRefGoogle Scholar
MERBACH, M. A., MERBACH, D. J., MASCHWITZ, U., BOOTH, W. E., FIALA, B. & ZIZKA, G. 2002. Mass march of termites into the deadly trap. Nature 415:3637.CrossRefGoogle ScholarPubMed
MORAN, J. A. 1996. Pitcher dimorphism, prey composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. Journal of Ecology 84:515525.CrossRefGoogle Scholar
MORAN, J. A., BOOTH, W. E. & CHARLES, J. K. 1999. Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: implications for prey capture. Annals of Botany 83:521528.CrossRefGoogle Scholar
MORAN, J. A., MERBACH, M. A., LIVINGSTON, N. J., CLARKE, C. M. & BOOTH, W. E. 2001. Termite prey specialisation in the pitcher plant Nepenthes albomarginata – evidence from stable isotope analysis. Annals of Botany 88:307311.CrossRefGoogle Scholar
MORAN, J. A., CLARKE, C. M. & HAWKINS, B. J. 2003. From carnivore to detritivore? Isotopic evidence for litter utilisation by the tropical pitcher plant Nepenthes ampullaria. International Journal of Plant Sciences 164:635639.CrossRefGoogle Scholar
PHILLIPPS, A. & LAMB, A. 1996. Pitcher-plants of Borneo. National History Publications (Borneo), Kota Kinabalu. 171 pp.Google Scholar
RATSIRARSON, J. & SILANDER, J. A. 1996. Structure and dynamics in Nepenthes madagascariensis pitcher plant micro-communities. Biotropica 28:218227.CrossRefGoogle Scholar
R. Development Core Team. 2009. R: A Language and Environment for Statistical Computing. ISBN 3-900051-07-0.Google Scholar
SLACK, A. 2000. Carnivorous plants. MIT Press, Cambridge. 240 pp.Google Scholar
SOKAL, R. R. & ROHLF, F. J. 1998. Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Co., New York. 887 pp.Google Scholar
VAN SICKLE, J. 1997. Using mean similarity dendrograms to evaluate classifications. Journal of Agricultural, Biological, and Environmental Statistics 2:370388.CrossRefGoogle Scholar
WESENER, T. & SIERWALD, P. 2005. New giant pill-millipede species from the littoral forest of Madagascar (Diplopoda, Sphaerotheriida, Zoosphaerium). Zootaxa 1097:16.CrossRefGoogle Scholar
WHITE, F. 1983. The vegetation of Africa. UNESCO, Gland. 356 pp.Google Scholar