Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T12:34:29.586Z Has data issue: false hasContentIssue false

No simple relationship between above-ground tree growth and fine-litter production in tropical forests

Published online by Cambridge University Press:  01 May 2008

Luke P. Shoo*
Affiliation:
Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University of North Queensland, Townsville, Queensland 4811, Australia
Jeremy VanDerWal
Affiliation:
Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University of North Queensland, Townsville, Queensland 4811, Australia
*
1Corresponding author. Email: [email protected]

Extract

An important deficiency of the tropical forest data set on above-ground net primary productivity (ANPP) is the paucity of studies where requisite components of forest productivity have been measured at the same location. Missing data on above-ground biomass increment (ABI, which refers to the incremental growth of trees) and fine-litter production (leaves, fruit, flowers, small twigs, but excluding coarse woody debris) is particularly problematic as these are the two major components of ANPP. The fragmentary nature of the data is reflected by the fact that only 13 of 39 (33%) plots reviewed by Clark et al. (2001) and 8 of 104 (8%) plots reviewed by Malhi et al. (2004) had data on both major components of productivity. In an attempt to retain the geographic coverage and replication of data in analyses, researchers have proposed ways to infer missing data. Typically ratios or (more recently) fitted relationships between ABI and litter production have been used for this purpose (Bray & Gorham 1964, Clark et al. 2001, Murphy 1975).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARAÚJO, T. M., HIGUCHI, N. & DE CARVALHO, J. A. 1999. Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Pará, Brazil. Forest Ecology and Management 117:4352.CrossRefGoogle Scholar
BRAY, J. R. & GORHAM, E. 1964. Litter production in forests of the world. Advances in Ecological Research 2:101157.CrossRefGoogle Scholar
BROWN, S. & LUGO, A. E. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14:161187.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D. W., CHAMBERS, J. Q., THOMLINSON, J. R., NI, J. & HOLLAND, E. A. 2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 11:371384.CrossRefGoogle Scholar
CLARK, D. A., PIPER, S. C., KEELING, C. D. & CLARK, D. B. 2003. Tropical rainforest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences USA 100:5852–5857.CrossRefGoogle Scholar
CUEVAS, E. & MEDINA, E. 1986. Nutrient dynamics within Amazonian forest ecosystems: I. nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466472.CrossRefGoogle ScholarPubMed
FILIP, V., DIRZO, R., MAASS, J. M. & SARUKHAN, J. 1995. Within-and among-year variation in the levels of herbivory on the foliage of trees from a Mexican tropical deciduous forest. Biotropica 27:7886.CrossRefGoogle Scholar
GENTRY, A. H. 1983. Lianas and the “paradox” of contrasting latitudinal gradients in wood and litter production. Tropical Ecology 24:6367.Google Scholar
HARRINGTON, R. A., FOWNES, J. H. & VITOUSEK, P. M. 2001. Production and resource use efficiency in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646657.CrossRefGoogle Scholar
HEGARTY, E. E. 1991. Leaf litter production by lianes and trees in a sub-tropical Australian rain forest. Journal of Tropical Ecology 7: 201214.CrossRefGoogle Scholar
HERBERT, D. A. & FOWNES, J. H. 1999. Forest productivity and efficiency of resource use across a chronosequence of tropical montane soils. Ecosystems 2:242254.CrossRefGoogle Scholar
JANZEN, D. H., & VÁZQUEZ-YANES, C. 1991. Aspects of tropical seed ecology of relevance to management of tropical forested wildlands. Pp. 137157 in Gomez-Pompa, A., Whitmore, T. C. & Hadley, M. (eds.). Rain forest regeneration and management. UNESCO, Paris, and The Parthenon Publishing Group, Carnforth.Google Scholar
KIRA, T. 1978. Community architecture and organic matter dynamics in tropical lowland rain forests of Southeast Asia with special reference to Pasoh Forest, West Malaysia. Pp. 561590 in Tomlinson, P. B. & Zimmerman, M. H. (eds.). Tropical trees as living systems. Cambridge University Press, New York.Google Scholar
KITAYAMA, K. & AIBA, S.-I. 2002. Ecosystem structure and productivity of tropical rainforests along altitudinal gradients with contrasting soil phosphorus pools on Mt. Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
MALHI, Y., BAKER, T. R., PHILLIPS, O. L., ALMEIDA, S., ALVAREZ, E., ARROYO, L., CHAVE, J., CZIMCZIK, C. I., DI FIORE, A., HIGUCHI, N., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., MARÍA MERCADO MONTOYA, L., MONTEAGUDO, A., NEILL, D. A., NÚÑEZ VARGAS, P., PATIÑO, S., PITMAN, N. C. A., ALBERTO QUESADA, C., SALOMÃO, R., NATALINO, J., SILVA, M., TORRES LEZAMA, A., VÁSQUEZ MARTÍNEZ, R., TERBORGH, J., VINCETI, B. & LLOYD, J. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10:563591.CrossRefGoogle Scholar
MARTINEZ-YRIZAR, A., MAASS, J. M., PÉREZ-JIMÉNEZ, L. A. & , SARUKHÁN. J. 1996. Net primary productivity of a tropical deciduous forest ecosystem in western Mexico. Journal of Tropical Ecology 12:169175.CrossRefGoogle Scholar
MURPHY, P. G. 1975. Net primary productivity in tropical terrestrial ecosystems. Pp. 217231 in Lieth, H. & Whittaker, R. H. (eds.). Primary productivity of the biosphere. Springer-Verlag, New York.CrossRefGoogle Scholar
NEPSTAD, D. C., MOUTINHO, P., DIAS-FILHO, M. B., DAVIDSON, E., CARDINOT, G., MARKEWITZ, D., FIGUEIREDO, R., VIANNA, N., CHAMBERS, J., RAY, D., GUERREIROS, J. B., LEFEBVRE, P., STERNBERG, J., MOREIRA, M., BARROS, L., ISHIDA, F. Y., TOHLVER, I., BELK, E., KALIF, K. & SCHWALBE, K. 2002. The effects of partial throughfall exclusion on canopy processes, above-ground-production and biochemistry of an Amazon forest. Journal of Geophysical Research 107 (D20):10.1029/2001JD000360.CrossRefGoogle Scholar
PAOLI, G. D. & CURRAN, L. M. 2007. Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems 10:503518.CrossRefGoogle Scholar
PAOLI, G. D., CURRAN, L. M. & ZAK, D.R. 2005. Phosphorus efficiency of aboveground productivity in Bornean rain forest: evidence against the unimodal efficiency hypothesis. Ecology 86:15481561.CrossRefGoogle Scholar
RAICH, J. W., RUSSELL, A. E. & VITOUSEK, P. M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78:707721.Google Scholar
SCHUUR, E. A. G. & MATSON, P. A. 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431442.CrossRefGoogle ScholarPubMed
SIERRA, C. A., HARMON, M. E., MORENO, F. H., ORREGO, S. A. & DEL VALLE, J. I. 2007. Spatial and temporal variability of net ecosystem production in a tropical forest: testing the hypothesis of a significant carbon sink. Global Change Biology 13:838853.CrossRefGoogle Scholar
SIZER, N. C., TANNER, E. V. J. & KOSSMANN FERRAZ, I. D. K. 2000. Edge effects on litterfall mass and nutrient concentrations in forest fragments in central Amazonia. Journal of Tropical Ecology 16:853863.CrossRefGoogle Scholar
TAKYU, M., AIBA, S.-I. & KITAYAMA, K. 2003. Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia 134:397404.CrossRefGoogle ScholarPubMed
WRIGHT, I. J., REICH, P. B., CORNELISSEN, J. H. C., FALSTER, D. S., GROOM, P. K., HIKOSAKA, K., LEE, W., LUSK, C. H., NIINEMETS, Ü., OLEKSYN, J., OSADA, N., POORTER, H., WARTON, D. I. & WESTOBY, M. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14:411421.CrossRefGoogle Scholar