Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T22:53:40.183Z Has data issue: false hasContentIssue false

Litterfall mass and nutrient fluxes over an altitudinal gradient in the coastal Atlantic Forest, Brazil

Published online by Cambridge University Press:  01 August 2017

Eráclito Rodrigues de Sousa-Neto
Affiliation:
Instituto Nacional de Pesquisas Espaciais - INPE, Av. dos Astronautas 1758, São José dos Campos-SP, Brasil
Sílvia Rafaela Machado Lins*
Affiliation:
Centro de Energia Nuclear na Agricultura, Av. Centenário 303, Piracicaba-SP, Brasil
Susian Christian Martins
Affiliation:
Centro de Agronegócio da Fundação Getúlio Vargas, Rua Itapeva, 474, São Paulo-SP, Brasil
Marisa de Cássia Piccolo
Affiliation:
Centro de Energia Nuclear na Agricultura, Av. Centenário 303, Piracicaba-SP, Brasil
Maurício Lamano Ferreira
Affiliation:
Universidade Nove de Julho, Departamento de Ciências da Saúde, Av. Adolfo Pinto, 109, São Paulo – SP, Brasil
Plínio Barbosa de Camargo
Affiliation:
Centro de Energia Nuclear na Agricultura, Av. Centenário 303, Piracicaba-SP, Brasil
Janaina Braga do Carmo
Affiliation:
Universidade Federal de São Carlos, Campus de Sorocaba, SP, Brazil
Edmar Antonio Mazzi
Affiliation:
Centro de Energia Nuclear na Agricultura, Av. Centenário 303, Piracicaba-SP, Brasil
Benjamin Z. Houlton
Affiliation:
University of California, Davis – One Shields Avenue, Davis, CA, USA
Luiz Antonio Martinelli
Affiliation:
Centro de Energia Nuclear na Agricultura, Av. Centenário 303, Piracicaba-SP, Brasil
*
*Corresponding author. Email: [email protected]

Abstract:

Litterfall is one of the most important pathways through which nutrients are recycled in the terrestrial biosphere. In tropical soils, which are generally low in essential nutrients such as phosphorus and cations, the flux of nutrients through litterfall is particularly important to sustaining CO2-uptake capacity; however, questions remain over the role of altitude in altering litter nutrient cycling rates among tropical forest ecosystems. Here we examine litterfall, carbon (C), nitrogen (N) and phosphorus (P) fluxes through litterfall over an altitudinal gradient in the coastal Atlantic Forest located on the northern coast of the State of São Paulo, Brazil. Litterfall was collected twice a month for 1 y (April 2007–March 2008) using 30 litter traps placed in four different forest types arrayed by altitude – coastal forest (sea level), lowland forest (50–200 m asl), submontane forest (300–500 m asl) and montane forest (1000 m asl). Litterfall mass-fluxes decreased with increasing altitude, from ~9 Mg ha−1 in lowland forests to 7 Mg ha−1 in higher-altitude ecosystems. Contribution of reproductive organs to litterfall was significantly greater in lower than in higher altitudes. Litterfall N and P fluxes were higher in the lowland forest vs. other forest types, pointing to strong altitudinal controls over nutrient cycling. Furthermore, nitrogen-use efficiency (NUE) was lower and litter δ15N was higher in the lowland site providing additional evidence for lack of N constraints to productivity in lowland of the south-eastern Atlantic Forest.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVAREZ, C. A., STAPE, J. L., SENTELHAS, P. C., GONÇALVEZ, J. L. M. & SPAROVEK, G. 2014. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22:711728.CrossRefGoogle Scholar
ALVES, L. F., VIEIRA, S. A., SCARANELLO, M. A., CAMARGO, P. B., SANTOS, F. A. M., JOLY, C. A. & MARTINELLI, L. A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management 260:679691.Google Scholar
ANDRADE, T. M. B., CAMARGO, P. B., SILVA, D. M. L., PICCOLO, M. C., VIEIRA, S. A., ALVES, L. F., JOLY, C. A. & MARTINELLI, L. A. 2011. Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the coastal Atlantic forest in southeast Brazil. Soil, Water and Soil Pollution 214:393408.CrossRefGoogle Scholar
ARAGÃO, L. E. O. C., MALHI, Y., METCALFE, D. B., SILVA-ESPEJO, J. E., JIMÉNEZ, E., NAVARRETE, D., ALMEIDA, S., COSTA, A. C. L., SALINAS, N., PHILLIPS, O. L., ANDERSON, L. O., ALVAREZ, E., BAKER, T. R., GONCALVEZ, P. H., HUAMÁN-OVALLE, J., MAMANI-SOLÓRZANO, M., MEIR, P., MONTEAGUDO, A., PATIÑO, S., PEÑUELA, M. C., PRIETO, A., QUESADA, C. A., ROZAS-DÁVILA, A., RUDAS, A., SILVA, J. A. & VÁSQUEZ, R. 2009. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6:27592778.Google Scholar
ARNOLD, J., CORRE, M. D. & VELDKAMP, E. 2009. Soil N cycling in old-growth forests across an Andosol toposequence in Ecuador. Forest Ecology and Management 257:20792087.CrossRefGoogle Scholar
BRAY, J. & GORHAM, E. 1964. Litter production in forests of the World. Advances in Ecological Research 2:101157.CrossRefGoogle Scholar
BRITO, V. L. G. & SAZIMA, M. 2012. Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Systematics and Evolution 298:12711279.Google Scholar
CASTRO, E. R., GALETTI, M. & MORELLATO, L. P. C. 2007. Reproductive phenology of Euterpe edulis (Arecaceae) along a gradient in the Atlantic rainforest of Brazil. Australian Journal of Botany 55:725.Google Scholar
CHAVE, J., NAVARRETE, D., ALMEIDA, S., ÁLVAREZ, E., ARAGÃO, L. E. O. C., BONAL, D., CHÂTELET, P., SILVA-ESPEJO, J. E., GORET, J.-Y., VON HILDEBRAND, P., JIMÉNEZ, E., PATIÑO, S., PEÑUELA, M. C., PHILLIPS, O. L., STEVENSON, P. & MALHI, Y. 2010. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:4355.Google Scholar
CORRE, M. D., VELDKAMP, E., ARNOLD, J. & WRIGHT, S. J. 2010. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:17151729.Google Scholar
CRAINE, J., CRAINE, J. M., ELMORE, A. J., AIDAR, M. P. M., BUSTAMANTE, M., DAWSON, T. E., HOBBIE, E. A., KAHMEN, A., MACK, M. C., MCLAUCHLAN, K. K., MICHELSEN, A., NARDOTO, G. B. & PARDO, L. H. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi. New Phytologist 183:980992.Google Scholar
DE ALMEIDA, F. F. M. 1976. The system of continental rifts bordering the Santos basin, Brazil. Anais da Academia Brasileira de Ciências 48 (suppl):1526.Google Scholar
EDWARDS, P. J. 1977. Studies of mineral cycling in a montane rain forest in New Guinea: II. The production and disappearance of litter. Journal of Ecology 65:971992.CrossRefGoogle Scholar
EISENLOHR, P. V. & DE OLIVEIRA-FILHO, A. T. 2015. Revisiting patterns of tree species composition and their driving forces in the Atlantic Forests of Southeastern Brazil. Biotropica 47:698701.Google Scholar
FURIAN, S., BARBIÉRO, L., BOULET, R., CURMI, P., GRIMALDI, M. & GRIMALDI, C. 2002. Distribution and dynamics of gibbsite and kaolinite in an oxisol of Serra do Mar, southeastern Brazil. Geoderma 106:83100.CrossRefGoogle Scholar
GIRARDIN, C. A. J., MALHI, Y., ARAGÃO, L. E. O. C., MAMANI, M., HUARACA HUASCO, W., DURAND, L., FEELEY, K. J., RAPP, J., SILVA-ESPEJO, J. E., SILMAN, M., SALINAS, N. & WHITTAKER, R. J. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16:31763192.CrossRefGoogle Scholar
GROPPO, J. D. 2010. Caracterização hidrológica e dinâmica do nitrogênio em uma microbacia com cobertura florestal (Mata Atlântica), no Parque Estadual da Serra do Mar, núcleo Santa Virgínia. Universidade de São Paulo, Piracicaba. 80 pp.Google Scholar
GRUBB, P. J. 1971. Interpretation of the ‘Massenerhebung’ effect on tropical mountains. Nature 229:4445.CrossRefGoogle ScholarPubMed
GUAN, K., PAN, M., LI, H., WOLF, A., WU, J., MEDVIGY, D., CAYLOR, K. K., SHEFFIELD, J., WOOD, E. F., MALHI, Y., LIANG, M., KIMBALL, J. S., SALESKA, S. R., BERRY, J., JOINER, J. & LYAPUSTIN, A. I. 2015. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geosciences 8:284289.CrossRefGoogle Scholar
HEDIN, L. O., BROOKSHIRE, E. N. J., MENGE, D. N. L. & BARRON, A. R. 2009. The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution and Systematics 40:613635.CrossRefGoogle Scholar
HÖGBERG, P. 1997. 15N natural abundance in soil-plant systems. New Phytologist 137:179203.Google Scholar
HOULTON, B. Z., SIGMAN, D. M. & HEDIN, L. O. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proceedings of the National Academy of Sciences USA 103:8745–50.CrossRefGoogle ScholarPubMed
HUETE, A. R., DIDAN, K., SHIMABUKURO, Y. E., RATANA, P., SALESKA, S. R., HUTYRA, L. R., YANG, W., NEMANI, R. R. & MYNENI, R. 2006. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters 33:25.Google Scholar
MALHI, Y., DOUGHTY, C. & GALBRAITH, D. 2011. The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences 366:32253245.Google Scholar
MARDEGAN, S. F. 2013. Variação na dinâmica do nitrogênio e nos atributos foliares em fisionomias de restinga da região Sudeste do Brasil. Universidade de São Paulo, Piracicaba. 178 pp.Google Scholar
MARTINELLI, L. A., PICCOLO, M. C., TOWNSEND, A. R., VITOUSEK, P. M., CUEVAS, E., MCDOWELL, W., ROBERTSON, G. P., SANTOS, O. C. & TRESEDER, K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:4565.Google Scholar
MARTINELLI, L. A., LINS, S. R. M. & SILVA, J. C. S. in press. Fine litterfall in the Brazilian Atlantic Forest. Biotropica.Google Scholar
MARTINS, S. C., SOUSA NETO, E., PICCOLO, M. D. C., ALMEIDA, D. Q. A., CAMARGO, P. B. DE, DO CARMO, J. B., PORDER, S., LINS, S. R. M. & MARTINELLI, L. A. 2015. Soil texture and chemical characteristics along an elevation range in the coastal Atlantic Forest of Southeast Brazil. Geoderma Regional 5:106116.Google Scholar
MELILLO, J. M., MCGUIRE, A. D., KICKLIGHTER, D. W., MOORE, B., VOROSMARTY, C. J. & SCHLOSS, A. L. 1993. Global climate change and terrestrial net primary production. Nature 363:234240.Google Scholar
MORELLATO, L. P. C., TALORA, D. C., TAKAHASI, A., BENCKE, C. C., ROMERA, E. C. & ZIPPARRO, V. B. 2000. Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811823.Google Scholar
MURRAY-SMITH, C., BRUMMITT, N. A, OLIVEIRA-FILHO, A. T., BACHMAN, S., MOAT, J., NIC LUGHADHA, E. M. & LUCAS, E. J. 2009. Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology 23:151163.CrossRefGoogle ScholarPubMed
MYERS, N., MITTERMEIER, R. A, MITTERMEIER, C. G., DA FONSECA, G. A. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.CrossRefGoogle ScholarPubMed
NOTTINGHAM, A. T., WHITAKER, J., TURNER, B. L., SALINAS, N., ZIMMERMANN, M., MALHI, Y. & MEIR, P. 2015. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65:906921.Google Scholar
OLIVEIRA-FILHO, A. T. 2009. Classificação das fitofisionomias da América do Sul. Rodriguésia 60:237258.Google Scholar
PARDO, L. H., TEMPLER, P. H., GOODALE, C. L., DUKE, S., GROFFMAN, P. M., ADAMS, M. B., BOECKX, P., BOGGS, J., CAMPBELL, J., COLMAN, B., COMPTON, J., EMMETT, B., GUNDERSEN, P., LOVETT, G., MACK, M., MAGILL, A., MBILA, M., MITCHELL, M. J., NADELHOFFER, K., OLLINGER, S., ROSS, D., RUETH, H., RUSTAD, L., SCHABERG, P., SCHIFF, S., SCHLEPPI, P., SPOELSTRA, J. & WESSEL, W. 2006. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143171.CrossRefGoogle Scholar
PINTO, L. C., MELLO, C. R., OWENS, P. R., NORTON, L. D. & CURI, N. 2016. Role of inceptisols in the hydrology of mountainous catchments in southeastern Brazil. Journal of Hydrologic Engineering 21: 05015017.Google Scholar
POSADA, J. M. & SCHUUR, E. A. G. 2011. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165:783–95.CrossRefGoogle ScholarPubMed
PROCTOR, J. 1983. Tropical forest litterfall. I. Problems of data comparison. Pp. 267273 in Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds). Tropical rain forest: ecology and management. Blackwell Scientific Publications, Oxford.Google Scholar
RANTA, P., BLOM, T., NIEMELA, J., JOENSUU, E. & SIITONEN, M. 1998. The fragmented Atlantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodiversity and Conservation 7:385403.CrossRefGoogle Scholar
RAVAGNANI, E. C. 2015. Dinâmica do nitrogênio e carbono em rios da bacia do alto Paraíba do Sul, Estado de São Paulo. Universidade of São Paulo, Piracicaba. 97 pp.Google Scholar
REICH, P. B. & BORCHERT, R. 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72:61.CrossRefGoogle Scholar
RIBEIRO, M. C., METZGER, J. P., MARTENSEN, A. C., PONZONI, F. J. & HIROTA, M. M. 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142:11411153.Google Scholar
RÖDERSTEIN, M., HERTEL, D. & LEUSCHNER, C. 2005. Above- and below-ground litter production in three tropical montane forests in southern Ecuador. Journal of Tropical Ecology 21:483492.Google Scholar
ROSADO, B. H. P., JOLY, C. A., BURGESS, S. S. O., OLIVEIRA, R. S. & AIDAR, M. P. M. 2016. Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees 30: 4761.CrossRefGoogle Scholar
SALEMI, L. F., GROPPO, J. D., TREVISAN, R., DE MORAES, J. M., DE BARROS FERRAZ, S. F., VILLANI, J. P., DUARTE-NETO, P. J. & MARTINELLI, L. A. 2013. Land-use change in the Atlantic rainforest region: consequences for the hydrology of small catchments. Journal of Hydrology 499:100109.Google Scholar
SANCHEZ, M., PEDRONI, F., EISENLOHR, P. V. & OLIVEIRA-FILHO, A. T. 2013. Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, southeastern Brazil, from near sea level to 1000m of altitude. Flora 208:184196.CrossRefGoogle Scholar
SCARANELLO, M. A. S., ALVES, L., VIEIRA, S. A., CAMARGO, P. B., JOLY, C. A. & MARTINELLI, L. A. 2012. Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil. Scientia Agricola 69:2637.Google Scholar
SOUSA NETO, E., CARMO, J. B., KELLER, M., MARTINS, S. C., ALVES, L. F., VIEIRA, S. A., PICCOLO, M. C., CAMARGO, P., COUTO, H. T. Z., JOLY, C. A. & MARTINELLI, L. A. 2011. Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences 8: 733742.Google Scholar
UNGER, M., LEUSCHNER, C. & HOMEIER, J. 2010. Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant and Soil 336:443458.CrossRefGoogle Scholar
VELOSO, H. P., RANGEL FILHO, A. L. R. & LIMA, J. C. A. 1991. Classificação da Vegetação brasileira adaptada a um sistema universal. IBGE, Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro. 124 pp.Google Scholar
VIEIRA, S. A., ALVES, L. F., DUARTE-NETO, P. J., MARTINS, S. C., VEIGA, L. G., SCARANELLO, M. A., PICOLLO, M. C., CAMARGO, P. B., DO CARMO, J. B., NETO, E. S., SANTOS, F. A. M., JOLY, C. A. & MARTINELLI, L. A. 2011. Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecology and Evolution 1:421434.Google Scholar
VITOUSEK, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285298.Google Scholar
VITOUSEK, P. M., MATSON, P. A., VOLKMAN, C., MAASS, J. M. & GARCIA, G. 1989. Nitrous oxide flux from dry tropical forests. Global Biogeochemical Cycles 3:375382.Google Scholar
WAGNER, F. H., HÉRAULT, B., BONAL, D., STAHL, C., ANDERSON, L. O., BAKER, T. R., BECKER, G. S., BEECKMAN, H., BOANERGES SOUZA, D., BOTOSSO, P. C., BOWMAN, D. M. J. S., BRÄUNING, A., BREDE, B., BROWN, F. I., CAMARERO, J. J., CAMARGO, P. B., CARDOSO, F. C. G., CARVALHO, F. A., CASTRO, W., CHAGAS, R. K., CHAVE, J., CHIDUMAYO, E. N., CLARK, D. A., COSTA, F. R. C., COURALET, C., DA SILVA MAURICIO, P. H., DALITZ, H., RESENDE DE CASTRO, V., MILANI, J. E. D. F., CONSUELO DE OLIVEIRA, E., DE SOUZA ARRUDA, L., DEVINEAU, J. L., DREW, D. M., DÜNISCH, O., DURIGAN, G., ELIFURAHA, E., FEDELE, M., FERREIRA FEDELE, L., FIGUEIREDO FILHO, A., FINGER, C. A. G., CÉSAR FRANCO, A., JÚNIOR, J. L. F., GALVÃO, F., GEBREKIRSTOS, A., GLINIARS, R., LIMA DE ALENCASTRO GRAÇA, P. M., GRIFFITHS, A. D., GROGAN, J., GUAN, K., HOMEIER, J., RAQUEL KANIESKI, M., KHOON KHO, L., KOENIG, J., VALERIO KOHLER, S., KREPKOWSKI, J., LEMOS-FILHO, J. P., LIEBERMAN, D., EUGENE LIEBERMAN, M., SERGIO LISI, C., LONGHI SANTOS, T., AYALA, J. L. L., EIJJI MAEDA, E., MALHI, Y., MARIA, V. R. B., MARQUES, M. C. M., MARQUES, R., MAZA CHAMBA, H., MBWAMBO, L., LIANA LISBOA MELGAÇO, K., ANGELA MENDIVELSO, H., MURPHY, B. P., O'BRIEN, J. J. F., OBERBAUER, S., OKADA, N., PLISSIER, R., PRIOR, L. D., ROIG, F. A., ROSS, M., RODRIGO ROSSATTO, D., ROSSI, V., ROWLAND, L., RUTISHAUSER, E., SANTANA, H., SCHULZE, M., SELHORST, D., RODRIGUES SILVA, W., SILVEIRA, M., SPANNL, S., SWAINE, M. D., TOLEDO, J. J., MIRANDA TOLEDO, M., TOLEDO, M., TOMA, T., TOMAZELLO FILHO, M., IGNACIO VALDEZ HERNÁNDEZ, J., VERBESSELT, J., APARECIDA VIEIRA, S., VINCENT, G., VOLKMER DE CASTILHO, C., VOLLAND, F., WORBES, M., BOLZAN ZANON, M. L. & ARAGÃO, L. E. O. C. 2016. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences 13:25372562.Google Scholar
WALKER, L. R., ZIMMERMAN, J. K., LODGE, D. J. & GUZMAN-GRAJALES, S. 1996. An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico. Journal of Ecology 84: 887889.CrossRefGoogle Scholar
WOLF, K., VELDKAMP, E., HOMEIER, J. & MARTINSON, G. O. 2011. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles 25: GB4009.CrossRefGoogle Scholar
WRIGHT, S. J. & CORNEJO, F. H. 1990. Seasonal drought and leaf fall in a tropical forest. Ecology 71:11651175.Google Scholar
WU, J., ALBERT, L. P., LOPES, A. P., RESTREPO-COUPE, N., HAYEK, M., WIEDEMANN, K. T., GUAN, K., STARK, S. C., CHRISTOFFERSEN, B., PROHASKA, N., TAVARES, J. V., MAROSTICA, S., KOBAYASHI, H., FERREIRA, M. L., CAMPOS, K. S., DA SILVA, R., BRANDO, P. M., DYE, D. G., HUXMAN, T. E., HUETE, A. R., NELSON, B. W. & SALESKA, S. R. 2016. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351:972976.Google Scholar
ZHANG, H., YUAN, W., DONG, W. & LIU, S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20:240247.Google Scholar