Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T18:26:46.524Z Has data issue: false hasContentIssue false

Leaf characteristics, wood anatomy and hydraulic properties in tree species from contrasting habitats within upper Rio Negro forests in the Amazon region

Published online by Cambridge University Press:  29 January 2010

M. A. Sobrado*
Affiliation:
Laboratorio de Biología Ambiental de Plantas, Departamento de Biología de Organismos, Universidad Simón Bolívar, Apartado 89.000, Caracas 1080 A, Venezuela

Abstract:

Leaf blade physical and chemical characteristics, wood composition and anatomy, as well as long-term water-use efficiency and hydraulic characteristics of leaf-bearing terminal branches were assessed in tree species growing in contrasting forests of the Venezuelan Amazonas: mixed forest on oxisol soil and caatinga on podzol soil. Two upper-canopy tree species were selected in each forest, and three individuals per species were tagged for sampling. Leaf nitrogen isotopic signatures (δ15N) were negative and species-specific, which suggests that in species of both forest the N-cycle is closed, and that tree species can withdraw N from a variety of N-pools. Leaf construction costs, dry mass to leaf area ratio, thickness and sclerophylly index tended to increase in microhabitats with lower fertility and large water table fluctuations. The hydraulic characteristics and long-term water use are species-specific and related to the particular conditions of the habitat at the local scale. Ocotea aciphylla (mixed forest) with a combination of low δ13C and high hydraulic sufficiency may maintain high water loss without risk of xylem embolisms. By contrast, Micranda sprucei (slopes of the caatinga forest), had a combination of relatively high hydraulic sufficiency and the highest long-term water-use efficiency, which suggest that embolism risk would be avoided by water loss restriction. Assuming a warmer and drier climate in the future, the species with more conservative water transport and/or better stomatal control would be at lower risk of mortality.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BENTLEY, B. L., HERRERA, E., ARNASON, J. T., MOLINA-BURK, J. S., CASTILLEJA, R., GARCIA-GARCIA, L. E., JORDAN, C. F., RUSSEL, C. E., SALATI, E. & SANHUESA, E. 1982. Report of the work group on Latin American forests. Plant and Soil 67:415420.CrossRefGoogle Scholar
BREIMER, R. F. 1985. Some observations on soils in relation to forest types in San Carlos de Rio Negro, Venezuela. Pp. 108110 in Breimer, R. F., van Kekem, A. J. & van Reuler, H. (eds). Guidelines for soil survey in ecological research. MAB Technical Notes No 17. UNESCO, Paris.Google Scholar
CHAPIN, F. S. 1989. The cost of tundra plant structures: evaluation of concepts and currencies. American Naturalist 113:119.CrossRefGoogle Scholar
CHOAT, B., COBB, A. R. & JANSEN, S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist 177:608626.CrossRefGoogle ScholarPubMed
CHOONG, M. F., LUCAS, P. W., ONG, J. S. Y., PEREIRA, B., TAN, H. T. W. & TURNER, I. M. 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121:597610.CrossRefGoogle Scholar
DEZZEO, N., MAQUIRINO, P., BERRY, P. E. & AYMARD, G. 2000. Principales tipos de bosque en el area de San Carlos de Rio Negro. Scientia Guaianae 11:1536.Google Scholar
EHLERINGER, J. & OSMOND, C. B. 1989. Stable isotopes. Pp. 281300 in Pearcy, R. W., Ehleringer, J., Mooney, H. A. & Rundel, P. W. (eds). Plant physiological ecology: field methods and instrumentation. Chapman and Hall, New York.CrossRefGoogle Scholar
ENGELBRECHT, B. M. J., COMITA, L. S., CONDIT, R., KURSAR, T. A., TYREE, M. T., TURNER, B. L. & HUBBELL, S. P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:8082.CrossRefGoogle ScholarPubMed
FARQUHAR, G. D., O'LEARY, M. H. & BERRY, J. A. 1982. On the relationship between carbon isotope determination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9:121137.Google Scholar
FRANCO, W. & DEZZEO, N. 1994. Soils and soil water regime in the tierra firme-caatinga forest complex near San Carlos de Rio Negro, State of Amazonas, Venezuela. Interciencia 19:305316.Google Scholar
GARTNER, B. L., MOORE, J. R. & GARDINER, B. A. 2004. Gas in stems: abundance and potential consequences for tree biomechanics. Tree Physiology 24:12391250.CrossRefGoogle ScholarPubMed
HERRERA, R. 1977. Soil and terrain conditions in the San Carlos de Rio Negro Project (Venezuela MAB-1) study site; correlation with vegetation types. Pp. 182188 in Brünig, E. F. (ed.). Transactions of the International MAB-IUFRO Workshop on Tropical Rainforest Ecosystems Research (Jakarta). Special Report No 1. World Chair of Forestry, Hamburg-Reinbek.Google Scholar
HERRERA, R., JORDAN, C. F., KLINGE, H. & MEDINA, E. 1978a. Amazon ecosystems. Their structure and functioning with particular emphasis on nutrients. Interciencia 3:223232.Google Scholar
HERRERA, R., MERIDA, T., STARK, N. & JORDAN, C. F. 1978b. Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65:208209.CrossRefGoogle Scholar
HOULTON, B. Z., SIGMAN, D. M. & HEDIN, L. O. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proceedings of the National Academy of Sciences, USA 103:87458750.CrossRefGoogle ScholarPubMed
JONES, H. G. & SUTHERLAND, R. A. 1991. Stomatal control of xylem embolism. Plant, Cell and Environment 14:607612.CrossRefGoogle Scholar
JORDAN, C., CASKEY, W., ESCALANTE, G., HERRERA, R., MONTAGNINI, F., TODD, R. & UHL, T. 1982. The nitrogen cycle in a ‘Terra Firme’ rainforest on oxisol in the Amazon territory of Venezuela. Plant and Soil 67:325332.CrossRefGoogle Scholar
JORDAN, C. F. 1982. The nutrient balance of an Amazonian rain forest. Ecology 63:647654.CrossRefGoogle Scholar
JORDAN, C. F. & KLINE, J. R. 1977. Transpiration of trees in a tropical rainforest. Journal of Applied Ecology 14:853860.CrossRefGoogle Scholar
KING, D. A., DAVIES, S. J., SYLVESTER, T. & NOOR, N. S. M. 2009. Trees approach gravitation limits to height in tall lowland forests of Malaysia. Functional Ecology 23:284291.CrossRefGoogle Scholar
KLINGE, H. 1978. Studies on the ecology of Amazon caatinga forest in Southern Venezuela. Acta Cientifica Venezolana 29:258262.Google Scholar
KURSAR, T. A., ENGELBRECHT, B. M. J., BURKE, A., TYREE, M. T., EL OMARI, B. & GIRALDO, J. P. 2009. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Functional Ecology 23:93102.CrossRefGoogle Scholar
LAWTON, R. O. 1984. Ecological constraints on wood density in a tropical montane rain forest. American Journal of Botany 71:261267.CrossRefGoogle Scholar
LOVELESS, A. R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Annals of Botany 26:551561.CrossRefGoogle Scholar
MAGNANI, F., DEBSADA, A., CINNIRELLA, S., RIPULLONE, F. & BORGHETTI, M. 2008. Hydraulic limitation and water-use efficiency in Pinus pinaster along a chronosequence. Canadian Journal of Forest Research 38:7381.CrossRefGoogle Scholar
MARDEGAN, S. F., NARDOTO, G. B., HIGUCHI, N., MOREIRA, M. Z. & MARTINELLI, L. A. 2009. Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees 23:479488.CrossRefGoogle Scholar
MARTINELLI, L. A., PICCOLO, M. C., TOWNSEED, A. R., VITOUSEK, P. M., CUEVAS, E., McDOWELL, W., ROBERTSON, G. P., SANTOS, O. C. & TRESEDER, K. 1999. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46:4565.CrossRefGoogle Scholar
MEDINA, E., GARCIA, V. & CUEVAS, E. 1990. Sclerophylly and oligotrophic environments: relationships between leaf structure and mineral nutrient content, and drought resistance in tropical rain forests of the upper Rio Negro region. Biotropica 22:5154.CrossRefGoogle Scholar
NARDOTO, G. B., OMETTO, J. P. H. B., EHLERINGER, J. R., HIGUCHI, N., BUSTAMANTE, M. M. C. & MARTINELLI, L. A. 2008. Understanding the influences of spatial patterns on N availability within the Brazilian Amazon forest. Ecosystems 11:12341246.CrossRefGoogle Scholar
PAINE, C. E. T., HARMS, K. E. & RAMOS, J. 2009. Supplemental irrigation increases seedling performance and diversity in a tropical forest. Journal of Tropical Ecology 25:171180.CrossRefGoogle Scholar
PATIÑO, S., LLOYD, J., PAIVA, R., BAKER, T. R., QUESADA, C. A., MERCADO, L. M., SCHMERIER, J., SCHWARZ, M., SANTOS, A. J. B.., AGUILAR, A., CZIMCZIK, C. I., GALLO, J., HORNA, V., HOYOS, E. J., JIMÉNEZ, E. M., PALOMINO, W., PEACOCK, J., PEÑA-CRUZ, A., SARMIENTP, C., SOTA, A., TURRIAGO, J. D., VILLANUEVA, B., VITZTHUM, P., ALVAREZ, E., ARROYO, L., BARALOTO, C., BONAI, D., CAVE, J., COSTA, A. C. L., HERRERA, E., HIGUCHI, N., KILLEEN, T., LEAL, E., LUIZAO, F., MEIR, P., MONTEAGUDIO, A., NEIL, D., NUÑEZ-VARGAS, P., PEÑUELA, M. C., PITMAN, N., PRIANTE-FILHO, N., PRIETO, A., PANFIL, S. N., RUDAS, A., SALOMÃO, R., SILVA, N., SILVEIRA, M., SOARES DE ALMEIDA, S., TORRES-LEZAMA, A., VAZQUEZ-MARTINEZ, R., VIEIRA, I., MALHI, Y. & PHILLIPS, O. L. 2009. Branch xylem density variations across Amazonia. Biogeosciences Discussions 6:545568.CrossRefGoogle Scholar
PENNING DE VRIES, F. W. T., BRUNSTING, A. H. M. & VAN LAAR, H. H. 1974. Products, requirements and efficiency of biosynthesis: a quantitiative approach. Journal of Theoretical Biology 45:339377.CrossRefGoogle Scholar
PONTON, S., DUPOUEY, J. L., BRÉDA, N., FEUILLAT, F., BODÉNÈS, C. & DEYER, E. 2001. Carbon isotope discrimination and wood anatomy variations in mixed stands of Quercus robur and Quercus petraea. Plant, Cell and Environment 24:861868.CrossRefGoogle Scholar
POORTER, H., NIINEMETS, U., POORTER, L., WRIGHT, I. J. & VILLAR, R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182:565588.CrossRefGoogle ScholarPubMed
POORTER, L. 2008. The relationships of wood-, gas- and water fractions of tree stems to performance and life history variation in tropical trees. Annals of Botany 102:367375.CrossRefGoogle ScholarPubMed
POORTER, L. & BONGERS, F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:17331743.CrossRefGoogle ScholarPubMed
SELLIN, A. 2001. Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. Tree Physiology 21:879888.CrossRefGoogle ScholarPubMed
SIAU, J. F. 1971. Flow in wood. Syracuse University Press, New York. 131 pp.Google Scholar
SIAU, J. F. 1984. Transport processes in wood. Springer-Verlag, Berlin. 245 pp.CrossRefGoogle Scholar
SOBRADO, M. A. 1991.Cost-benefit relationships in deciduous and evergreen leaves of tropical dry forest species. Functional Ecology 5:608616.CrossRefGoogle Scholar
SOBRADO, M. A. 2003. Hydraulic characteristics and leaf water use efficiency in trees from tropical montane habitats. Trees 17:400406.CrossRefGoogle Scholar
SOBRADO, M. A. 2008. Leaf characteristics and diurnal variation of chlorophyll fluorescence in leaves of the ‘Bana’ vegetation of the Amazon region. Photosynthetica 46:202207.CrossRefGoogle Scholar
SOBRADO, M. A. 2009a. Cost-benefit relationships in sclerophyllous leaves of the ‘Bana’ vegetation in the Amazon region. Trees 23:429437.CrossRefGoogle Scholar
SOBRADO, M. A. 2009b. Leaf tissue water relations and hydraulic properties of sclerophyllous vegetation on white sands of the upper Rio Negro in the Amazon region. Journal of Tropical Ecology 25:271280.CrossRefGoogle Scholar
SPERRY, J. S. 2003. Evolution of water transport and xylem structure. International Journal of Plant Science 164:115127.CrossRefGoogle Scholar
SPERRY, J. S. & SALIENDRA, N. Z. 1994. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell and Environment 17:12331241.CrossRefGoogle Scholar
SPERRY, J. S., DONNELLY, J. R. & TYREE, M. T. 1988. A method for measuring hydraulic conductivity and embolism xylem. Plant, Cell and Environment 11:3540.CrossRefGoogle Scholar
SUNGPALEE, W., ITOH, A., KANZAKI, M., SRI-NGERNYUANG, K., NOGUCHI, H., MIZUNO, T., TEEJUNTUK, S., HARA, M., CHAI-UDOM, K., OHKUBO, T., SAHUNALU, P., DHANMMANONDA, P., NANAMI, S., YAMAKURA, T. & SORN-NGAI, A. 2009. Intra-and interspecific variation in wood density and fine-scale spatial distribution of stand-level wood density in a northern Thai tropical montane forest. Journal of Tropical Ecology 25:359370.CrossRefGoogle Scholar
TURNER, I. M. 1994a. Sclerophylly: primarily protective? Functional Ecology 8:669675.CrossRefGoogle Scholar
TURNER, I. M. 1994b. A quantitative analysis of leaf form in woody plants from the world's major broad-leaved forest types. Journal of Biogeography 21:413419.CrossRefGoogle Scholar
TYREE, M. T. & SPERRY, J. S. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiology 88:574580.CrossRefGoogle ScholarPubMed
TYREE, M. T. & ZIMMERMANN, M. H. 2002. Xylem structure and the ascent of sap. (Second edition). Springer-Verlag, Berlin. 278 pp.CrossRefGoogle Scholar
TYREE, M. T., DAVIES, S. D. & COCHARD, H. 1994. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal 15:335360.CrossRefGoogle Scholar
UHL, C. & MURPHY, P. G. 1981. Composition, structure and regeneration of a tierra firme forest in the Amazon basin of Venezuela. Tropical Ecology 22:219237.Google Scholar
VAN GELDER, H. A., POORTER, L. & STERCK, F. C. 2006. Wood mechanics, allometry and life-history variation in a tropical rain forest tree community. New Phytologist 171:367378.CrossRefGoogle Scholar
WANG, J., IVES, N. E. & LECHOWICZ, M. J. 1992. The relation of foliar phenology to xylem embolism in trees. Functional Ecology 6:469475.CrossRefGoogle Scholar
WHITEHEAD, D. & JARVIS, P. J. 1981. Coniferous forests and plantations. Pp. 49152 in Kozlowski, T. T. (ed.). Water deficits and plant growth. Volume 6. Academic Press, New York.Google Scholar
WILLIAM, S. 1984. Official methods of analysis. AOC, Arlington.Google Scholar
WILLIAMS, K., PERCIVAL, F., MERINO, J. & MOONEY, H. A. 1987. Estimation of tissue construction costs from heat of combustion and organic nitrogen content. Plant Cell and Environment 10:725734.CrossRefGoogle Scholar