Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T11:10:17.342Z Has data issue: false hasContentIssue false

Influences of forest structure and landscape features on spatial variation in species composition in a palm community in central Amazonia

Published online by Cambridge University Press:  14 August 2014

Lilian Figueiredo Rodrigues
Affiliation:
Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), 69067-375, Manaus, AM, Brasil
Renato Cintra*
Affiliation:
Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), 69067-375, Manaus, AM, Brasil
Carolina Volkmer Castilho
Affiliation:
Centro de Pesquisas Agroflorestal de Roraima (Embrapa), 69301-970, Boa Vista, RR, Brasil
Ocírio de Sousa Pereira
Affiliation:
Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), 69067-375, Manaus, AM, Brasil
Tânia P. Pimentel
Affiliation:
Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia (INPA), 69067-375, Manaus, AM, Brasil
*
1Corresponding author. Email: [email protected]

Abstract:

The mechanisms that maintain palm species diversity in tropical rain forests are still debated. Spatial variation in forest structure produces small-scale environmental heterogeneity, which in turn can affect plant survival and reproductive performance. An understanding of how palms respond to variation in forest heterogeneity may help to explain the diversity and structure of their assemblages. We used multivariate ordination statistics and multiple linear models to analyse how palm assemblages are affected by forest structure and landscape features in central Amazonia. In 72 (250×4 m) forest plots distributed over an area of 64 km2, we recorded all seedling and adult palms, and measured topographic and soil variables, and components of forest structure and tree abundance. We found 16976 adults and 18935 seedlings of 46 palm species and five varieties including two morphological forms making a total of 50 botanical entities. Results show that landscape features (altitude, slope, proportions of soil sand and clay) and various components of forest structure (such as degree of forest openness, abundance of forest trees, logs and snags, and leaf litter mass), influence spatial variation in richness, abundance and species composition of palms, creating ecological gradients in palm community composition. Despite the statistically significant effects of environmental variables, most species occurred throughout the full range of the ecological gradients we studied, indicating that there is either relatively weak niche specialization in the palms, or that the competition between the species is mediated by diffuse demographic processes that cannot be evaluated only through studies of species distributions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AUGSPURGER, C. K. & KELLY, C. K. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61:211217.Google Scholar
BANKS, C. & CINTRA, R. 2008. The heterogeneity of Amazonian treefall gaps and bird community composition. Ecotropica 14:113.Google Scholar
BALSLEV, H., FRANCIS, K. F., MILLAN, B., SVENNING, J.-C., KRISTIANSEN, T., BORCHSENIUS, F., PEDERSEN, D. & EISERHARDT, W. L. 2011. Species diversity and growth forms in tropical American palm communities. Botanical Review 77:381425.CrossRefGoogle Scholar
BORG, I. & GROENEN, P. 1997. Modern multidimensional scaling. Springer-Verlag, New York. 614 pp.CrossRefGoogle Scholar
CASTILHO, C. V., MAGNUSSON, W. E. & ARAUJO, R. N. O. 2006. Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography. Forest Ecology and Management 234:8596.Google Scholar
CHAUVEL, A., LUCAS, Y. & BOULET, R. 1987. On the genesis of the soil mantle of the region of Manaus, central Amazonia, Brazil. Experientia 43:234241.Google Scholar
CINTRA, R. 1997a. Leaf litter effects on seed and seedling predation of the palm Astrocaryum murumuru and the legume tree Dipteryx micrantha in Amazonian forest. Journal of Tropical Ecology 4:99119.Google Scholar
CINTRA, R. 1997b. A test of the Janzen–Connell model with two common tree species in Amazonian forest. Journal of Tropical Ecology 13:641658.CrossRefGoogle Scholar
CINTRA, R. 1998. Sobrevivência pós-dispersão de sementes de plântulas de três espécies de palmeiras em relação a presença de componentes da complexidade estrutural da floresta Amazônica. Pp. 8398 in Gascon, C. & Moutinho, P. (eds.). Floresta Amazônica: dinâmica, regeneração e manejo. Ministério da Ciência e Tecnologia-Instituto Nacional de Pesquisa da Amazônia, Manaus.Google Scholar
CINTRA, R. & HORNA, V. 1997. Seed and seedling survival of the palm Astrocaryum murumuru and the legume tree Dipteryx micrantha in gaps in Amazonian forest. Journal of Tropical Ecology 13:257277.CrossRefGoogle Scholar
CINTRA, R. & NAKA, L. 2012. Spatial variation in bird community composition in relation to topographic gradient and forest heterogeneity in a central Amazonian rainforest. International Journal of Ecology 2012. doi: 10.1155/2012/435671.Google Scholar
CINTRA, R. & TERBORGH, J. 2000. Forest microspatial heterogeneity and seed and seedling survival of the palm Astrocaryum murumuru and the legume Dipteryx micrantha in an Amazonian forest. Ecotropica 6:7788.Google Scholar
CINTRA, R., XIMENES, A. C., GONDIM, F. R. & KROPF, M. S. 2005. Forest spatial heterogeneity and palm richness, abundance and community composition in terra firme forest, Central Amazon. Revista Brasileira de Botânica 28:7584.Google Scholar
CLARK, D. B., PALMER, M. W. & CLARK, D. A. 1999. Edaphic factors and the landscape-scale distributions of tropical rainforest trees. Ecology 80:26622675.Google Scholar
CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 1992. Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a Neotropical forest. American Naturalist 140:261286.Google Scholar
COSTA, F. R. C., GUILLAUMET, J. L., LIMA, A. P. & PEREIRA, O. S. 2008. Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science 20:6978.Google Scholar
COUVREUR, T. L. P., FOREST, F. & BAKER, W. J. 2011. Origin and global diversification patterns of tropical rainforest: inferences from a complete genus-level phylogeny of palms. BMC Biology 9:44. http://www.biomedcentral.com/1741–7007/9/44.Google Scholar
DENSLOW, J. S., NEWELL, E. & ELISSON, A. M. 1991. The effect of understory palms and cyclanths on the growth and survival of Inga seedlings. Biotropica 23:225234.Google Scholar
DRUCKER, D. P., COSTA, F. R. C. & MAGNUSSON, W. E. 2008. How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. Journal of Tropical Ecology 24:6574.Google Scholar
EISERHARDT, W. L., SVENNING, J.-C., KISSLING, W. D. & BALSLEV, H. 2011. Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany 108:13911416.Google Scholar
EMILIO, T., QUESADA, C. A., COSTA, F. R. C., MAGNUSSON, W. E., SCHIETTI, J., FELDPAUSCH, T., BRIENEN, R. J. W., BAKER, T. R. & CHAVE, J. 2014. Soil physical constraints as a limiting factor of palm and tree basal area in Amazonian forests. Plant Ecology and Diversity 7:215229. http://dx.doi.org/ 10.1080/17550874.2013–772257.Google Scholar
ENGLUND, S. R., O`BRIAN, J. J. & CLARK, D. B. 2000. Evaluation of digital and film hemispherical photography and spherical densiometry for measuring forest light environments. Canadian Journal of Forest Research 30:19992005.CrossRefGoogle Scholar
FOWLER, N. L. 1988. What is a safe site? Neighbour, litter, germination date, and patch effects. Ecology 69:947961.Google Scholar
FOX, J. 2002. An R and S-Plus companion to applied regression. Sage Publications, London. 597 pp.Google Scholar
GUÈZE, M. & PANEQUE-GÁLVEZ, J. 2013. Determinants of tree species turnover in a Southern Amazonian rain forest. Journal of Vegetation Science 24:284295.Google Scholar
HENDERSON, A. 1995. The palms of the Amazon. Oxford University Press, New York. 363 pp.Google Scholar
IBÁÑEZ, I. & SCHUPP, E. W. 2001. Positive and negative interactions between enviromental conditions affecting Cercocarpus ledifolius seedling survival. Oecologia 129:543550.Google Scholar
KAHN, F. 1987. The distributions of palms as a function of local topography in Amazonia terra-firme forests. Experientia 43:251259.Google Scholar
KAHN, F. & CASTRO, A. 1985. The palm community in a forest of central Amazonia, Brazil. Biotropica 17:210216.Google Scholar
KILTIE, R. A. 1981. Distribution of palm fruits on a rain forest floor: why white-lipped peccaries forage near objects. Biotropica 13:141145.Google Scholar
KINUPP, V. F. & MAGNUSSON, W. E. 2005. Spatial patterns in the understory shrub genus Psychotria in central Amazonia: effects of distance and topography. Journal of Tropical Ecology 21:363374.CrossRefGoogle Scholar
KRISTIANSEN, T., SVENNING, J-C., PEDERSEN, D., EISERHARDT, W. L., GRANDEZ, C. & BALSLEV, H. 2011. Local and regional palm (Arecaceae) species richness patterns and their cross-scale determinants in the western Amazon. Journal of Ecology 99:10011015.Google Scholar
LAURANCE, W. F., LOVEJOY, T. E., VASCONCELOS, H. L., BRUNA, E. M., DIDHAM, R. K., STOUFFER, P. C., GASCON, C., BIERREGAARD, R. O., LAURANCE, S. G. & SAMPAIO, E. 2002. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology 16:605618.Google Scholar
LEIBOLD, M. A. 2008. Return of the niche. Nature 454:3940.Google Scholar
LORENZI, H., NOBLICK, L., KAHN, F. & PEREIRA, E. 2010. Flora Brasileira Lorenzi: Arecaceae (palmeiras). Instituto Plantarum, Nova Odessa, São Paulo. 303 pp.Google Scholar
LOSOS, E. 1995. Habitat specificity of two palm species: experimental transplantation in Amazonian successional forests. Ecology 76:25952606.Google Scholar
LUIZÃO, F. J. & SCHUBART, H. O. R. 1987. Litter production and decomposition in a terra-firme forest of Central Amazonia. Experientia 43:259265.CrossRefGoogle Scholar
MAGNUSSON, W. E., LIMA, A. P., LUIZÃO, R., LUIZÃO, F., COSTA, F. R. C., CASTILHO, C. V. & KINUPP, V. F. 2005. RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica 5:16.Google Scholar
MATHIEU, C. & PIELTAIN, F. 1998. Analyse physique des sols: méthodes choisies. Lavoisier, Paris. 277 pp.Google Scholar
MCCUNE, B. & GRACE, , , J. B. 2002. Analysis of ecological communities. MjM Sofware, Gleneden Beach. 300 pp.Google Scholar
MENDONÇA, F. P., MAGNUSSON, W. E. & ZUANON, J. 2005. Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia 2005:750763.CrossRefGoogle Scholar
MENIN, M., LIMA, A. P., MAGNUSSON, W. E. & WALDEZ, F. 2007. Topographic and edaphic effects on the distribution of terrestrially reproducing anurans in central Amazonia: mesoscale spatial patterns. Journal of Tropical Ecology 23:539547.Google Scholar
MINCHIN, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89107.Google Scholar
OLIVEIRA, P. Y., SOUZA, J. L. P., BACCARO, F. B. & FRANKLIN, E. 2009. Ant species distribution along a topographic gradient in a “terra firme” forest reserve in central Amazonia. Pesquisa Agropecuaria Brasileira 44:852860.Google Scholar
PERES, C. A. 1994. Composition, density and fruiting phenology of arborescent palms in an Amazonian terra firme forest. Biotropica 26:285294.Google Scholar
RAUPP, S. & CINTRA, R. 2011. Influence of a topographic gradient on the occurrence, abundance and composition of nine species of palms (Arecaceae) in the Central Amazon. Neotropical Biology and Conservation 6:124130.Google Scholar
Ribeiro, J. E. L. S., HOPKINS, M. J. G., VICENTINI, A., SOTHERS, C.A., COSTA, M. A. S., BRITO, J. M., SOUZA, M. A. D., MARTINS, L. H. P., LOHMANN, L. G., ASSUNÇÃO, P. A. C. L., PEREIRA, E. C., SILVA, C. F., MESQUITA, M. R. & PROCÓPIO, L. C. 1999. Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus. 816 pp.Google Scholar
RICKLEFS, R. E. 1977. Environmental heterogeneity and plant species diversity: a hypothesis. American Naturalist 111:376381.Google Scholar
RUSSEL, S. K. & SCHUPP, E. W. 1998. Effects of microhabitat patchiness on patterns of seed dispersal and seed predation of Cercocarpus ledifolius (Rosaceae). Oikos 81:434443.Google Scholar
SCARIOT, A. 1999. Forest fragmentation effects on palm diversity in central Amazonia. Journal of Ecology 87:6676.Google Scholar
SCARIOT, A., FILHO, A. T. O. & LLERAS, E. 1989. Species richness, density and distribution of palms in an eastern Amazonian seasonally flooded forest. Principes 33:172179.Google Scholar
SILMAN, M. R., TERBORGH, J. W. & KILTIE, R. A. 2003. Population regulation of a dominant rain forest tree by a major seed predator. Ecology 84:431438.Google Scholar
SORK, V. 1983. Distribution of pignut hickory Carva glabra along a forest to edge transect and factors affecting seedling recruitment. Bulletin of the Torrey Botanical Club 110:494506.Google Scholar
SVENNING, J. C. 1999. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology 87:5565.Google Scholar
SVENNING, J. C. 2001a. Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). Journal of Tropical Ecology 17:97113.Google Scholar
SVENNING, J. C. 2001b. On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forests palms (Arecaceae). Botanical Review 67:153.Google Scholar
TERBORGH, J., FOSTER, R. B. & NUÑEZ, V. P. 1996. Tropical tree communities: a test of the non-equilibrium hypothesis. Ecology 77:561567.Google Scholar
TILMAN, D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences USA 101:1085410861.Google Scholar
TOLEDO, J. J., MAGNUSSON, W. E. & CASTILHO, C.V. 2013. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. Journal of Vegetation Science 24:651663.Google Scholar
VORMISTO, J., TUOMISTO, H. & OKSANEN, J. 2004. Palm distribution patterns in Amazonian rainforests: what is the role of topographic variation? Journal of Vegetation Science 15:485494.Google Scholar
WRIGHT, S. J. 2002. Plant density in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:114.Google Scholar