Published online by Cambridge University Press: 24 February 2014
Fragmented populations are usually exposed to the negative effects of reduced gene flow, genetic drift and population differentiation. These effects result in the collective loss of genetic variation, thereby reducing the probability of population adaptation to new environmental conditions and increasing the risk of extinction. Forest fragments commonly exhibit suboptimal site conditions, which can result in enhanced clonal reproduction, and a potential reduction in clonal diversity due to increased selfing and inbreeding depression. The clonal diversity, genetic diversity and structure of Heliconia angusta (Heliconiaceae) were assessed using AFLP-markers. We analysed six patches in the continuous forest (Atlantic rain forest, State of Rio de Janeiro) and eight patches (155 leaf samples in total) in five nearby forest fragments (age of oldest fragment: c. 50 y; size range: < 5–100 ha). Clonal diversity (Pd) of patches was slightly, yet significantly, lower in forest fragments compared with continuous forest. Measures of genetic diversity of patches in forest fragments did not differ from those in the continuous forest. A STRUCTURE analysis did not show any clear clustering of patches in the continuous forest and forest fragments. Our results suggest that H. angusta has not yet suffered from the anticipated negative effects of fragmentation.