Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T11:55:03.466Z Has data issue: false hasContentIssue false

Infection intensity, spore density and inoculum potential of arbuscular mycorrhizal fungi decrease during secondary succession in tropical Brazilian ecosystems

Published online by Cambridge University Press:  29 August 2012

Waldemar Zangaro*
Affiliation:
Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Programa de Pós-Graduação em Ciências Biológicas, 86051-990, Londrina, PR, Brazil
Adrielly Pereira Ansanelo
Affiliation:
Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Programa de Pós-Graduação em Ciências Biológicas, 86051-990, Londrina, PR, Brazil
Luis Eduardo Azevedo Marques Lescano
Affiliation:
Universidade Estadual de Londrina, Centro de Ciências Biológicas, Programa de Pós-Graduação em Microbiologia, 86051-990, Londrina, PR, Brazil
Ricardo de Almeida Alves
Affiliation:
Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Programa de Pós-Graduação em Ciências Biológicas, 86051-990, Londrina, PR, Brazil
Artur Berbel Lírio Rondina
Affiliation:
Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Programa de Pós-Graduação em Ciências Biológicas, 86051-990, Londrina, PR, Brazil
Marco Antonio Nogueira
Affiliation:
Universidade Estadual de Londrina, Centro de Ciências Biológicas, Programa de Pós-Graduação em Microbiologia, 86051-990, Londrina, PR, Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

Little is known about the relationship involving arbuscular mycorrhizal (AM) fungi and functional groups of plants that characterize different phases of tropical succession. We appraised the AM infection intensity of root cortex and spore density in the soil in sites over tropical successional gradients (grassland, secondary forest and mature forest) for several years in Araucaria, Atlantic and Pantanal ecosystems in Brazil. The intensity of AM infection decreased with advancing successional stages in all ecosystems and it was around 60–80% in early stages of succession, 37–56% in secondary forests and 19–29% in mature forests. Similarly, the AM spore number also decreased with advancing succession and was the highest in early stages (73–123 g−1), intermediate in secondary forests (32–54 g−1) and lowest in the mature forests (10–23 g−1). To verify whether such reductions influenced the potential of AM inoculum in soil, seedlings of Heliocarpus popayanensis (Malvaceae) were grown as test plants in soils obtained from five grasslands, five young secondary forests, and five mature forests in the Atlantic ecosystem. The soil inocula from the grasslands and secondary forests were 7.6 and 5.7 times more effective in stimulating seedling growth than inocula from the mature forests, respectively. Our results show that plant species in grasslands and young secondary forests stimulate the multiplication of AM fungi, leading to a higher potential of the AM inoculum. In later-successional stages, plant investment in AM fungi decreases and the potential of the AM inoculum is also reduced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

2

Present address: Embrapa Soja, Cx. Postal 231, 86001-970 Londrina, PR, Brazil.

References

LITERATURE CITED

AIDAR, M. P. M., CARRENHO, R. & JOLY, C. A. 2004. Aspects of arbuscular mycorrhizal fungi in an Atlantic Forest chronosequence. Biota Neotropica 4:115.Google Scholar
BRUNDRETT, M. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154:275304.Google Scholar
BRUNDRETT, M., BEEGHER, N., DELL, B., GROOVE, T. & MALAJCZUK, N. 1996. Working with mycorrhizas in forestry and agriculture. ACIAR Monograph, Canberra. 374 pp.Google Scholar
FISCHER, C. R., JANOS, D. P., PERRY, D. A. & LINDERMAN, R. G. 1994. Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26:369377.Google Scholar
GAMAGE, H. K., SINGHAKUMARA, B. M. P. & ASHTON, M. S. 2004. Effects of light and fertilization on arbuscular mycorrhizal colonization and growth of tropical rain-forest Syzygium tree seedlings. Journal of Tropical Ecology 20:525534.Google Scholar
GIOVANNETTI, M. & MOSSE, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infections in roots. New Phytologist 84:489500.Google Scholar
JANOS, D. P. 1980. Mycorrhizae influence tropical succession. Biotropica 12:5664.Google Scholar
JANOS, D. P. 1992. Heterogeneity and scale in tropical vesicular–arbuscular mycorrhiza formation. Pp. 276282 in Read, D. J., Lewis, D. H., Fitter, A. H. & Alexander, I. J. (eds). Mycorrhizas in ecosystems. CAB International, Wallingford.Google Scholar
KHURANA, E. & SINGH, J. S. 2006. Impact of life-history traits on response of seedlings of five tree species of tropical dry forest to shade. Journal of Tropical Ecology 22:653661.Google Scholar
KITAJIMA, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419428.Google Scholar
LUSK, C. H., REICH, P. B., MONTGOMERY, R. A., ACKERLY, D. D. & CAVENDER-BARES, J. 2008. Why are evergreen leaves so contrary about shade? Trends in Ecology and Evolution 23:299303.Google Scholar
MATSUMOTO, L. S., MARTINES, A. M., AVANZI, A., ALBINO, U. B., BRASIL, C. B., SARIDAKIS, D. P., RAMPAZO, L. G. L., ZANGARO, W. & ANDRADE, G. 2005. Interactions among functional groups in the cycling of carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Applied Soil Ecology 28:5765.Google Scholar
MILLER, R. M., REINHARDT, D. R. & JASTROW, J. D. 1995. External hyphal production of vesicular arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:1723.Google Scholar
NIELSEN, K. L., BOUMA, T. J., LYNCH, J. P. & EISSENSTAT, D. M. 1998. Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytologist 139:647656.Google Scholar
PASQUALINI, D., UHLMANN, A. & STÜRMER, S. L. 2007. Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration of woody plants species from the Atlantic rain forest in South Brazil. Forest Ecology and Management 245:148155.Google Scholar
PICONE, C. 2000. Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734750.Google Scholar
PIZANO, C., MANGAN, S. A., HERRE, E. A., EOM, A. & DALLING, J. W. 2011. Above- and belowground interactions drive habitat segregation between two cryptic species of tropical trees. Ecology 92:4756.Google Scholar
POWERS, J. S., TRESEDER, K. K. & LERDAU, M. T. 2005. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distance. New Phytologist 165:913921.Google Scholar
SMITH, S. E. & READ, D. J. 2008. Mycorrhizal symbiosis. (Third edition). Academic Press, London. 797 pp.Google Scholar
STÜRMER, S. L. & SIQUEIRA, J. O. 2011. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21:255267.Google Scholar
VANDRESEN, J., NISHIDATE, F. R., TOREZAN, J. M. D. & ZANGARO, W. 2007. Inoculação de fungos micorrízicos arbusculares e adubação na formação e pós-transplante de mudas de cinco espécies arbóreas nativas do sul do Brasil. Acta Botanica Brasilica 21:753765.Google Scholar
ZANGARO, W., BONONI, V. L. R. & TRUFEN, S. B. 2000. Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. Journal of Tropical Ecology 16:603622.Google Scholar
ZANGARO, W., NISIZAKI, S. M. A., DOMINGOS, J. C. B. & NAKANO, E. M. 2003. Mycorrhizal response and sucessional status in 80 woody species from south Brazil. Journal of Tropical Ecology 19:315324.Google Scholar
ZANGARO, W., NISHIDATE, F. R., CAMARGO, F. R. S., ROMAGNOLI, G. G. & VANDRESEN, J. 2005. Relationships among arbuscular mycorrhizas, root morphology and seedling growth of tropical native woody species in southern Brazil. Journal of Tropical Ecology 21:529540.Google Scholar
ZANGARO, W., NISHIDATE, F. R., VANDRESEN, J., ANDRADE, G. & NOGUEIRA, M. A. 2007. Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of Tropical Ecology 23:5362.Google Scholar
ZANGARO, W., ASSIS, R. L., MOTTA, A. M., ROSTIROLA, L. V., SOUZA, P. B., GONÇALVES, M. C., ANDRADE, G. & NOGUEIRA, M. A. 2008. Arbuscular mycorrhizal association and fine root traits changes during succession in southern Brazil. Mycorrhiza 19:3745.Google Scholar
ZANGARO, W., ALVES, R. A., LESCANO, L. E. A. M., ANSANELO, A. P. & NOGUEIRA, M. A. 2012. Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in three Brazilian ecosystems. Biotropica 44:141150.Google Scholar