Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T20:36:33.085Z Has data issue: false hasContentIssue false

Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

Published online by Cambridge University Press:  20 November 2015

James W. Dalling*
Affiliation:
Department of Plant Biology and Program in Ecology, Evolution and Conservation Biology, University of Illinois, 505 S Goodwin Ave, Urbana, IL 61801, USA Smithsonian Tropical Research Institute, Apartado Postal 0843–03092, Panama, Republic of Panama
Katherine Heineman
Affiliation:
Department of Plant Biology and Program in Ecology, Evolution and Conservation Biology, University of Illinois, 505 S Goodwin Ave, Urbana, IL 61801, USA
Grizelle González
Affiliation:
International Institute of Tropical Forestry, USDA Forest Service, Jardín Botánico Sur, 1201 Calle Ceiba, Río Piedras, Puerto Rico, 00926–1119, USA
Rebecca Ostertag
Affiliation:
Department of Biology, University of Hawai‘i at Hilo, 200 W. Kawili Street, Hilo, HI 96720, USA
*
1Corresponding author. Email: [email protected]

Abstract:

Tropical montane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry. With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests. However, within TMF there is considerable variation in substrate age, parent material, disturbance and species composition. Here we emphasize that many TMFs are likely to be co-limited by multiple nutrients, and that feedback among soil properties, species traits, microbial communities and environmental conditions drive forest productivity and soil carbon storage. To date, studies of the biogeochemistry of montane forests have been restricted to a few, mostly neotropical, sites and focused mainly on trees while ignoring mycorrhizas, epiphytes and microbial community structure. Incorporating the geographic, environmental and biotic variability in TMF will lead to a greater recognition of plant–soil feedbacks that are critical to understanding constraints on productivity, both under present conditions and under future climate, nitrogen-deposition and land-use scenarios.

Type
Research Article
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADAMEK, M., CORRE, M. D. & HÖLSCHER, K. 2009. Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. Journal of Tropical Ecology 25:637647.Google Scholar
AIBA, S. & KITAYAMA, K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140:139157.Google Scholar
ANDERSEN, K. M., TURNER, B. L. & DALLING, J. W. 2010. Soil-based habitat partitioning in understorey palms in lower montane tropical forests. Journal of Biogeography 37:278292.Google Scholar
ANDERSEN, K. M. & TURNER, B. L. 2013. Preferences or plasticity in nitrogen acquisition by understorey palms in a tropical montane forest. Journal of Ecology 101:819825.Google Scholar
ARELLANO, G. & MACÍA, M. J. 2014. Local and regional dominance of woody plants along an elevational gradient in a tropical montane forest of northwestern Bolivia. Plant Ecology 215:3954.Google Scholar
ASANOK, L., MAROD, D., DUENGKAE, P., PRANMONGKOL, U., KUROKAWA, H., AIBA, M., KATABUCH, M. & NAKASHIZUKA, T. 2013. Relationships between functional traits and the ability of forest tree species to reestablish in secondary forest and enrichment plantations in the uplands of northern Thailand. Forest Ecology and Management 296:923.Google Scholar
ASNER, G. P. & MARTIN, R. E. In press. Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biology in press.Google Scholar
ASNER, G. P., MARTIN, R. E., FORD, A. J., METCALFE, D. J. & LIDDELL, M. J. 2009. Leaf chemical and spectral diversity in Australian tropical forests. Ecological Applications 19:236253.CrossRefGoogle ScholarPubMed
ASNER, G. P., MARTIN, R. E., TUPAYACHI, R., ANDERSON, C. B., SINCA, F., CARRANZA-JIMENEZ, L. & MARTINEZ, P. 2014a. Amazonian functional diversity from forest canopy chemical assembly. Proceedings of the National Academy of Sciences USA 111:56045609.CrossRefGoogle ScholarPubMed
ASNER, G. P., ANDERSON, C. B., MARTIN, R. E., KNAPP, D. E., TUPAYACHI, R., SINCA, F. & MALHI, Y. 2014b. Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient. Biogeosciences 11:843856.CrossRefGoogle Scholar
AVERILL, C., TURNER, B. L. & FINZI, A.C. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543545.Google Scholar
BALSER, T. C. 2001. The impact of long-term nitrogen addition on microbial community composition in three Hawaiian forest soils. Scientific World Journal 1: 500504.Google Scholar
BELLINGHAM, P. J. 1991. Landforms influence patterns of hurricane damage: evidence from Jamaican montane forests. Biotropica 23:427433.Google Scholar
BENNER, J., VITOUSEK, P. M. & OSTERTAG, R. 2010. Nutrient cycling and nutrient limitation in tropical montane cloud forests. Pp. 90100 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests. Cambridge University Press, New York.Google Scholar
BERRY, J. & BJÖRKMAN, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31:491543.Google Scholar
BRUIJNZEEL, L. A. & VENEKLAAS, E. J. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:39.Google Scholar
BRUIJNZEEL, L. A., WATERLOO, M. J., PROCTOR, J., KUITERS, A. T. & KOTTERINK, B. 1993. Hydrological observations in montane rain-forests on Gunnung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81:145167.Google Scholar
CARDELÚS, C. L. & MACK, M. C. 2010. The nutrient status of epiphytic ferns, orchids and bromeliads and their host tree along an elevation gradient, Costa Rica. Plant Ecology 207:2537.Google Scholar
CHEN, D. 2012. Patterns of soil properties and respiration along an elevation gradient in the Luquillo Mountains, northeastern Puerto Rico. MS Thesis, University of Puerto Rico, Río Piedras, Puerto Rico.Google Scholar
CLEVELAND, C., REED, S., KELLER, A., NEMERGUT, D., O'NEILL, S., OSTERTAG, R. & VITOUSEK, P. M. 2014. Litter quality versus microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283294.Google Scholar
CORDELL, S., GOLDSTEIN, G., MUELLER-DOMBOIS, D., WEBB, D. & VITOUSEK, P.M. 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113:188196.Google Scholar
CREWS, T. E., KITAYAMA, K., FOWNES, J. H., RILEY, R. H., HERBERT, D. A., MUELLER-DOMBOIS, D. & VITOUSEK, P. M. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:14071424.Google Scholar
CUSACK, D. F., CHOU, W. W., LIU, W. H., HARMON, M. E., SILVER, W. L. & LIDET-TEAM. 2009. Controls on long-term root and leaf litter decomposition in Neotropical forests. Global Change Biology 15:13391355.Google Scholar
CUSACK, D. F, TORN, M. S., MCDOWELL, W. H. & SILVER, W. L. 2010. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology 16:25552572.Google Scholar
CUSACK, D. F., SILVER, W. L., TORN, M. S., BURTON, S. D. & FIRESTONE, M. K. 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621632.Google Scholar
DALLING, J. W. & TANNER, E. V. J. 1995. An experimental study of regeneration on landslides in montane rain forest in Jamaica. Journal of Ecology 83:5564.Google Scholar
EVANS, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:919.CrossRefGoogle Scholar
FAHEY, T. J., SHERMAN, R. E. & TANNER, E. V. J. In press. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. Journal of Tropical Ecology, in press.Google Scholar
FISHER, J. B., MAHLI, Y., TORRES, I. C., METCALFE, D. B., VAN DE WEG, M. J., MEIR, P., SILVA-ESPEJO, J. E. & HUARACA HUASCO, W. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889902.Google Scholar
FOSTER, P. 2001. Potential negative impacts of global climate change on tropical montane cloud forests. Earth Science Reviews 55:73106.Google Scholar
GIARDINA, C. P., LITTON, C. M., CROW, S. E. & ASNER, G.P. 2014. Warming-related increases in soil CO 2 efflux are explained by increased below-ground carbon flux. Nature Climate Change 4:822827.Google Scholar
GIRARDIN, C. A. J., MALHI, Y., ARAGAO, L. E. O. C., MAMANI, M., HUARACA HUASCO, W., DURAND, L., FEELEY, K. J., RAPP, J., SILVA-ESPEJO, J.E., SILMAN, M., SALINAS, N. & WHITTAKER, R. J.. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16:31763192.Google Scholar
GONZÁLEZ, G. & LUCE, M. M. 2013. Woody debris characterization along an elevation gradient in northeastern Puerto Rico. Ecological Bulletins 54:181193.Google Scholar
GONZÁLEZ, G., LI, Y. & ZOU, X. 2007. Effects of post-hurricane fertilization and debris removal on earthworm abundance and biomass in subtropical forests in Puerto Rico. Pp. 99108 in Brown, G. G. & Fragoso, C. (eds.). Minhocas na America Latina: Biodiversidade e Ecologia. EMBRAPA Soja, Londrina, Brazil.Google Scholar
GOTSCH, S. G., NADKARNI, N., DARBY, A., GLUNK, A., DIX, M., DAVIDSON, K. & DAWSON, T. E. 2015. Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs 85: 393412.Google Scholar
GOULD, W. A., GONZÁLEZ, G. & CARRERO RIVERA, G. 2006. Structure and composition of vegetation along an elevational gradient in Puerto Rico. Journal of Vegetation Science 17:653664.Google Scholar
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.Google Scholar
GRUBB, P. J. & WHITMORE, T. C. 1966. A comparison of montane and lowland forest in Ecuador II. Journal of Ecology 54:303333.Google Scholar
HABER, W. A. 2000. Plants and Vegetation. Pp. 3070 in Nadkarni, N. L. & Wheelwright, N. T. (eds.). Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York.Google Scholar
HÄGER, A. & DOHRENBUSCH, A. 2011. Hydrometeorology and structure of tropical montane cloud forests under contrasting biophysical conditions in northwestern Costa Rica. Hydrological Processes 25:392401.Google Scholar
HARRINGTON, R. A., FOWNES, J. H. & VITOUSEK, P. M. 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646657.Google Scholar
HARRIS, N. L. & MEDINA, E. 2013. Changes in leaf properties across an elevation gradient in the Luquillo Mountains, Puerto Rico. Ecological Bulletins 54:169179.Google Scholar
HARRIS, N. L., HALL, C. A. S. & LUGO, A. E. 2013. A test of maximum power hypothesis along an elevational gradient in the Luquillo Experimental Forest. Ecological Bulletins 54:233244.Google Scholar
HASEGAWA, M., ITO, M. T. & KITAYAMA, K. 2013. Community structure of oribatid mites in relation to elevation and geology on the slope of Mount Kinabalu, Sabah, Malaysia. European Journal of Soil Biology 42: S191S196.Google Scholar
HEINEMAN, K. D., CABALLERO, P., MORRIS, A., VELASQUEZ, C., SERRANO, K., RAMOS, N., GONZALEZ, J., MAYORGA, L., CORRE, M. D. & DALLING, J. W. 2015. Variation in canopy litterfall along a precipitation and soil fertility gradient in a Panamanian lower montane forest. Biotropica. 47:300309.Google Scholar
HERTEL, D. & LEUSCHNER, C. 2010. Fine root mass and fine root production in tropical moist forests as dependent on soil, climate, and elevation. Pp. 428443 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forest. Cambridge University Press, New York.Google Scholar
HIETZ, P., TURNER, B. L., WANEK, W., RICHTER, A., NOCK, C. A. & WRIGHT, S. J. 2011. Long-term change in the nitrogen cycle of tropical forests. Science 334:664666.CrossRefGoogle ScholarPubMed
HOBBIE, S. E. & VITOUSEK, P.M. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:18671877.Google Scholar
HODGE, A. & FITTER, A. H. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences USA 107:1375413759.Google Scholar
HOMEIER, J., HERTEL, D., CAMENZIND, T., CUMBICUS, N. L., MARAUN, M., MARTINSON, G. O., POMA, L. N., RILIG, M. C., SANDMANN, D., SCHEU, S., VELDKAMP, E., WILCKE, W., WULLAERT, H. & LEUSCHNER, C. 2012. Tropical Andean forests are highly susceptible to nutrient inputs – rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS ONE 7:347128.Google Scholar
JOHN, R. C., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H., VALLEJO, M. & FOSTER, R. B. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA 104:864869.Google Scholar
JONES, M. M., SZYSKA, B. & KESSLER, M. 2011. Microhabitat partitioning promotes plant diversity in a tropical montane forest. Global Ecology and Biogeography 20:558569.Google Scholar
KAO-KNIFFIN, J. & BALSER, T. C. 2008. Soil fertility and the impact of exotic invasion on microbial communities in Hawaiian forests. Microbial Ecology 56:5563.CrossRefGoogle ScholarPubMed
KASPARI, M., CLAY, N. A., DONOSO, D. A. & YANOVIAK, S. P. 2014. Sodium fertilization increases termites and enhances decomposition in an Amazonian forest. Ecology 95:795800.Google Scholar
KITAYAMA, K. & AIBA, S. I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
KITAYAMA, K., RAITIO, H., MUELLER-DOMBOIS, D. & SCHUUR, E. 1998a. Wood volume, foliar chemical compositions and soil N mineralization in Metrosideros polymorpha (Myrtaceae) stands on Haleakala, Hawaii. Biotropica 30:330338.Google Scholar
KITAYAMA, K., SHIN-ICHIRO, A., NOREEN, M.-L. & MASAHIKO, O. 1998b. Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecological Research 3:301302.Google Scholar
KITAYAMA, K., AIBA, S.-I., TAKYU, M., MAJALAP, N. & WAGAI, R. 2004. Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podzolization. Ecosystems 7:259274.Google Scholar
KNORR, M., FREY, S. D. & CURTIS, P. S. 2005. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:32523257.Google Scholar
LARSEN, M. C. & SIMON, A. 1993. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler 75A:1323.Google Scholar
LASSO, E. & ACKERMAN, J. D. 2013. Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment. Oecologia 171:165174.Google Scholar
LAWTON, R. O. & PUTZ, F. E. 1988. Natural disturbance and gap-phase regeneration in a wind-exposed tropical cloud forest. Ecology 69:764777.Google Scholar
LEDO, A., BURSLEM, D. F. R. P., CONDES, S. & MONTES, F. 2013. Micro-scale habitat associations of woody plants in a neotropical cloud forest. Journal of Vegetation Science 24:10861097.Google Scholar
LEUSCHNER, C., MOSER, G., BERTSCH, C., RODERSTEIN, M. & HERTEL, D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219230.CrossRefGoogle Scholar
LIPPOK, D., BECK, S. G., RENISON, D., HENSEN, I., APAZA, A. E. & SCHLEUNING, M. 2014. Topography and edge effects are more important than elevation as drivers of vegetation patterns in neotropical montane forest. Journal of Vegetation Science 25:724733.Google Scholar
LONG, W., ZANG, R. & DING, Y. 2011. Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests. Flora 206:896903.CrossRefGoogle Scholar
MAGILL, A. H., ABER, J. D., HENDRICKS, J. J., BOWDEN, R. D., MELILLO, J. M. & STEUDLER, P. A. 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecological Applications 7:402415.Google Scholar
MALHI, Y., SILMAN, M., SALINAS, N., BUSH, M., MEIR, P. & SAATCHI, S. 2010. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology 16:31713175.CrossRefGoogle Scholar
MARRS, R., PROCTOR, J., HEANEY, A. & MOUNTFORD, M. 1988. Changes in soil nitrogen mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. Journal of Tropical Ecology 76:466482.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.Google Scholar
MARTIN, R. E., ASNER, G. P. & SACK, L. 2007. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151:387400.Google Scholar
MEUNIER, P., HOVIUS, N. & HAINES, J. A. 2008. Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters 275:221232.Google Scholar
MOSER, G., HERTEL, D. & LEUSCHNER, C. 2007. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924935.Google Scholar
NAIR, U. S., RAY, D. K., LAWTON, R. O., WELCH, R. M., PIELKE, R.A. & CALVO-ALVARADO, J. 2010. The impact of deforestation on orographic cloud formation in a complex tropical environment. Pp. 538548 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests. Cambridge University Press, New York.Google Scholar
NOGUCHI, H., ITOH, A., MIZUNO, T., SRI-NGERNYUANG, K., KANZAKI, M., TEEJUNTUK, S., SUNGPALEE, W., HARA, M., OHKUBO, T., SAHUNALU, P., DHANMMANONDA, P. & YAMAKURA, T. 2007. Habitat divergence in sympatric Fagaceae tree species of a tropical montane forest in northern Thailand. Journal of Tropical Ecology 23:549558.Google Scholar
ORWIN, K. H., KIRSCHBAUM, M. U. F., ST JOHN, M. G. & DICKIE, I. A. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters 14:493502.Google Scholar
OSTERTAG, R. & VERVILLE, J. H. 2002. Fertilization with nitrogen and phosphorus increases abundance of non-native species in Hawaiian montane forests. Plant Ecology 162:7790.CrossRefGoogle Scholar
PALIN, O. F., EGGLETON, P., MALHI, Y., GIRARDIN, C. I. J., ROZAS-DAVILA, A. & PARR, C. L. 2011. Termite diversity along an Amazon–Andes elevation gradient, Peru. Biotropica 43:100107.Google Scholar
PHILLIPS, R. P., BRZOSTEK, E. & MIDGLEY, M. G. 2013. The mycorrhizal associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist 199:4151.Google Scholar
PHOENIX, G. K., HICKS, K. W., CINDERBY, S., KUYLENSTIERNA, J. C. I., STOCK, W. D., DENTENER, F. J., GILLER, K. E., AUSTIN, A. T., LEFROY, R. D. B., GIMENO, B. S., ASHMORE, M. R. & INESON, P. 2006. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology 12:470476.Google Scholar
PING, C. L., MICHAELSON, G. J., STILES, C. A. & GONZÁLEZ, G. 2013. Soil characteristics, carbon stores, and nutrients distribution in eight forest types along an elevation gradient, eastern Puerto Rico. Ecological Bulletins 54:6786.Google Scholar
POTGIETER, L. J., WILSON, J. R. U., STRASBERG, D. & RICHARDSON, D. M. 2014. Casuarina invasion alters primary succession on lava flows on La Réunion Island. Biotropica 43:100107.Google Scholar
PREGITZER, K. S., BURTON, A. J., ZAK, D. R. & TALHELM, A. F. 2008. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Global Change Biology 14:142153.Google Scholar
PROCTOR, J., PHILLIPS, C., DUFF, G. K., HEANEY, A. & ROBERTSON, F. M. 1989. Ecological studies on Gunung Silam, a small untrabasic mountain in Sabah, Malaysia. II. Some forest processes. Journal of Ecology 77:317331.Google Scholar
RAICH, J. W., RUSSELL, A. E., CREWS, T. E., FARRINGTON, H. & VITOUSEK, P. M. 1996. Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry 32:707721.Google Scholar
RAICH, J. W., RUSSELL, A. E. & VITOUSEK, P. M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai‘i. Ecology 78:707721.Google Scholar
RAICH, J. W., RUSSELL, A. E., KITAYAMA, K., PARTON, W. J. & VITOUSEK, P. M. 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87:7687.Google Scholar
RAMOS SCHARRON, C. E., CASTELLANOS, E. J. & RESTREPO, C. 2012. The transfer of modern organic carbon by landslide activity in tropical montane ecosystems. Journal of Geophysical Research 117:G03016, DOI: 10.1029/2011JG001838.Google Scholar
READ, D. J. & PEREZ-MORENO, J. 2003. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist 157:475492.Google Scholar
READ, Q. D., MOORHEAD, L. C., SWENSON, N. G., BAILEY, J. K. & SANDERS, N. J. 2014. Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology 28:3745.Google Scholar
RESTREPO, C. & ALVAREZ, N. 2006. Landslides and their contribution to land-cover change in the mountains of Mexico and Central America. Biotropica 38: 446457.Google Scholar
RESTREPO, C. & VITOUSEK, P. 2001. Landslides, alien species, and the diversity of a Hawaiian montane mesic ecosystem. Biotropica 33: 409420.Google Scholar
RESTREPO, C., WALKER, L. R., SHIELS, A. B., BUSSMAN, R., CLAESSENS, L., FISCH, S., LOZANO, P., NEGI, G., PAOLINI, L., POVEDA, G., RAMOS-SCHARRÓN, C., RICHTER, M. & VELÁZQUEZ, E. 2009. Landsliding and its multiscale influence on mountainscapes. Bioscience 59: 685698.Google Scholar
RICHARDS, P. W. 1952. The tropical rain forest. Cambridge University Press, Cambridge. 450 pp.Google Scholar
RICHARDSON, D. M. & REJMÁNEK, M. 2011. Trees and shrubs as invasive alien species – a global review. Diversity and Distributions 17:788809.Google Scholar
ROMERO, C., PUTZ, F. E. & KITAJIMA, K. 2006. Ecophysiology in relation to exposure of pendant epiphytic bryophytes in the canopy of a tropical montane oak forest. Biotropica 38:3541.Google Scholar
SALINAS, N., MALHI, Y., MEIR, P., SILMAN, M. R., ROMAN CUESTA, R., HUAMAN, J., SALINAS, D., HUAMAN, V., MAMANI, M. & FARFAN, F. 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevational gradient in Peruvian forests. New Phytologist 189:967977.Google Scholar
SCATENA, F. N. 2010. Setting the stage. Pp. 313 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests. Cambridge University Press, New York.Google Scholar
SCHUUR, E. 2001. The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems 4:259273.Google Scholar
SCOWCROFT, P. G., TURNER, D. R. & VITOUSEK, P. M. 2000. Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii. Global Change Biology 6:7385.Google Scholar
SELMANTS, P. C., LITTON, C. M, GIARDINA, C. P. & ASNER, G. P. 2014. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests. Global Change Biology 20: 29272937.Google Scholar
SEYOUM, Y., FETENE, M., STROBL, S. & BECK, E. 2012. Foliage dynamics, leaf traits, and growth of coexisting evergreen and deciduous trees in a tropical montane forest in Ethiopia. Trees–Structure and Function 26:14951512.Google Scholar
SHIELS, A. & WALKER, L. R. 2013. Landslides cause spatial and temporal gradients at multiple scales in the Luquillo Mountains of Puerto Rico. Ecological Bulletins 54:211222.Google Scholar
SHREVE, F. 1914. A montane rainforest: a contribution to the physiological plant geography of Jamaica. Carnegie Institution, Washington, DC. 110 pp.Google Scholar
SILVER, W. L., LUGO, A. E. & KELLER, M. 1999. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301328.Google Scholar
SILVER, W. L., THOMPSON, A. W., HERMAN, D. J. & FIRESTONE, M. K. 2010. Is there evidence for limitations to nitrogen mineralization in upper montane tropical forests? Pp. 418443 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests. Cambridge University Press, New York.Google Scholar
SMITH, S. E., SMITH, A. F. & JAKOBSEN, I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133:1620.Google Scholar
SOETHE, N., LEHMANN, J. & ENGELS, C. 2008. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24:397406.Google Scholar
STERN, M. J. 1995. Vegetation recovery on earthquake-triggered landslide sites in the Ecuadorean Andes. Pp. 207220 in Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L. (eds.). Biodiversity and conservation of neotropical montane forests. New York Botanical Gardens, New York.Google Scholar
STILL, C. J., FOSTER, P. N. & SCHNEIDER, S. H. 1999. Simulating the effects of climate change on tropical montane cloud forest. Nature 389:608610.Google Scholar
SUNGPALEE, W., ITOH, A., KANZAKI, M., SRI-NGERNYUANG, K., NOGUCHI, H., MIZUNO, T., TEEJUNTUK, S., HARA, M., CHAI-UDOM, K., OHKUBO, T., SAHUNALU, P., DHANMMANONDA, P., NANAMI, S., YAMAKURA, T. & SORN-NGAI, A. 2009. Intra- and interspecific variation in wood density and fine-scale spatial distribution of stand-level wood density in a northern Thai tropical montane forest. Journal of Tropical Ecology 25:359370.Google Scholar
SVENNING, J.-C. 2001. Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). Journal of Tropical Ecology 17:97113.Google Scholar
SVENNING, J.-C., HARLEV, D., SØRENSEN, M. M. & BALSLEV, H. 2009. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador. Biodiversity and Conservation 18:219228.Google Scholar
TAKAHASHI, K. & MIKAMI, Y. 2006. Effects of canopy cover and seasonal reduction in rainfall on leaf phenology and leaf traits of the fern Oleandra pistillaris in a tropical montane forest, Indonesia. Journal of Tropical Ecology 22:599604.Google Scholar
TAKYU, M., AIBA, S. & KITAYAMA, K. 2002. Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology 159:3549.Google Scholar
TANNER, E. V. J. 1977. Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. Journal of Ecology 65:883918.Google Scholar
TANNER, E. V. J., KAPOS, V., FRESKOS, S., HEALEY, J. R. & THEOBALD, A. M. 1990. Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology 6:231238.Google Scholar
TANNER, E. V. J., KAPOS, V. & FRANCO, W. 1992. Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:7886.Google Scholar
TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 89:1022.Google Scholar
TRESEDER, K. K. & VITOUSEK, P. M. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946954.Google Scholar
TRESEDER, K. K., CZIMCZIK, C. I., TRUMBORE, S. E. & ALLISON, S. D. 2008. Uptake of an amino acid by ectomycorrhizal fungi in a boreal forest. Soil Biology and Biochemistry 40:19641966.Google Scholar
TWEITEN, M. A., HOTCHKISS, S. C., VITOUSEK, P. M., KELLNER, J. R., CHADWICK, O. A. & ASNER, G. P. 2014. Resilience against exotic species invasion in a montane forest. Journal of Vegetation Science 25:734749.CrossRefGoogle Scholar
VAN DE WEG, M. J., MEIR, P., GRACE, J. & ATKIN, O. K. 2009. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon–Andes gradient in Peru. Plant Ecology & Diversity 2:243254.Google Scholar
VAN DE WEG, M. J., MEIR, P., GRACE, J. & RAMOS, G. D. 2012. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168:2334.Google Scholar
VAN DER MOLEN, M. K., VUGTS, H. F., BRUIJNZEEL, L. A., SCATENA, F. N., PIELKE, R.A. & KROON, L. J. M. 2010. Meso-scale climate change due to lowland deforestation in the maritime tropics. Pp. 527537 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests. Cambridge University Press, New York.Google Scholar
VELÁZQUEZ-ROSAS, N., MEAVE, J. & VÁSQUEZ-SANTANA, S. 2002. Elevational variation of leaf traits in montane rain forest species at La Chinantla, Southern Mexico. Biotropica 34:534546.Google Scholar
VITOUSEK, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285298.Google Scholar
VITOUSEK, P. M. & FARRINGTON, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:6365.Google Scholar
VITOUSEK, P. M. & WALKER, L. R. 1989. Biological invasion by Myrica faya in Hawai'i: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs 59:247265.Google Scholar
VITOUSEK, P. M., MATSON, P. A. & TURNER, D. R. 1988. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77:565570.Google Scholar
VITOUSEK, P. M., FIELD, C.B. & MATSON, P. A. 1990. Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 84:362370.Google Scholar
VITOUSEK, P. M., WALKER, L. R., WHITEAKER, L. D. & MATSON, P. A. 1993. Nutrient limitation to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry 23:197215.Google Scholar
VITOUSEK, P. M., TURNER, D. R., PARTON, W. J. & SANFORD, R. L. 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms and models. Ecology 75:418429.Google Scholar
VONG, R. J., BAKER, B. M., BRECHTEL, F. J., COLLIER, R. T., HARRIS, J. M., KOWALSKI, A. S., MCDONALD, N. C. & MCINNES, L. M. 1997. Ionic and trace element composition of cloud water collected on the Olympic Peninsula of Washington State. Atmospheric Environment A31:19912001.Google Scholar
WAIDE, R. B. & WILLIG, M. R. 2012. Conceptual overview: disturbance, gradients, and response. Pp. 4271 in Brokaw, N., Crowl, T. A., Lugo, A. E., McDowell, W. H., Scatena, F. N., Waide, R. B. & Willig, M. R. (eds.). A Caribbean forest tapestry: the multidimensional nature of disturbance and response. Oxford University Press, New York.Google Scholar
WAIDE, R. B., ZIMMERMAN, J. K. & SCATENA, F. N. 1998. Controls of primary productivity: lessons from the Luquillo mountains in Puerto Rico. Ecology 79:3137.Google Scholar
WALDROP, M. P., ZAK, D. R., SINSABAUGH, R. L., GALLO, M. & LAUBER, C. 2004. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications 14:11721177.Google Scholar
WALKER, L. R., ZIMMERMAN, J. K., LODGE, D. J. & GUZMAN-GRAJALES. 1996. An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico. Journal of Ecology 84:877889.Google Scholar
WALLENSTEIN, M. D., MCNULTY, S., FERNANDEZ, I. J., BOGGS, J. & SCHLESINGER, W. H. 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management 222:459468.Google Scholar
WARDLE, D. A., BELLINGHAM, P. J., KARDOL, P., GIESLER, R. & TANNER, E. V. J. 2015. Coordinated aboveground and belowground responses to local-scale soil fertility differences among two contrasting Jamaican rain forest types. Oikos 124: 285297.Google Scholar
WEATHERS, K. C., LOVETT, G. M., LIKENS, G. E. & CARACO, N. F. M. 2000. Cloudwater inputs of nitrogen to forest ecosystems in southern Chile: forms, fluxes and sources. Ecosystems 3:590595.Google Scholar
WEAVER, P. L. 1989. Forest changes after hurricanes in Puerto Rico's Luquillo Mountains. Interciencia 14:181192.Google Scholar
WEAVER, P. L. 2010. Forest structure and composition in the lower montane rain forest of the Luquillo Mountains, Puerto Rico. Interciencia 35:640646.Google Scholar
WERNER, F. A. & HOMEIER, J. 2015. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology 29:430440.Google Scholar
WILLIAMS-LINERA, G. 2000. Leaf demography and leaf traits of temperate-deciduous and tropical evergreen-broadleaved trees in a Mexican montane cloud forest. Plant Ecology 149:233244.Google Scholar
WILLIG, M. R. & WALKER, L. R. 1999. Disturbance in terrestrial ecosystems: salient themes, synthesis, and future directions. Pp. 747767 in Walker, L. R. (ed.). Ecosystems of disturbed ground. Elsevier, Amsterdam.Google Scholar
WITTWICH, B., HORNA, V., HOMEIER, J. & LEUSCHNER, C. 2012. Altitudinal change in the photosynthetic capacity of tropical trees: a case study from Ecuador and a pantropical literature analysis. Ecosystems 15:958973.Google Scholar
WRIGHT, S. J., YAVITT, J. B., WURZBURGER, N., TURNER, B. L., TANNER, E. V. J., SAYER, E. J., SANTIAGO, L. S., KASPARI, M., HEDIN, L. O., HARMS, K. E., GARCIA, M. N. & CORRE, M. D. 2011. Potassium, phosphorus and nitrogen limit forest plants growing on a relatively fertile soil in the lowland tropics. Ecology 92:16161625.Google Scholar
WURZBURGER, N. & WRIGHT, S. J. 2015. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96:21372146.Google Scholar
YANG, X., WARREN, M. & ZOU, X. 2007. Fertilization responses of soil litter fauna and litter quantity, quality, and turnover in low and high elevation forests of Puerto Rico. Applied Soil Ecology 37:6371.Google Scholar
ZIMMERMAN, J. K., PULLIAM, W. M., LODGE, D. J., QUIÑONES-ORFILA, V., FETCHER, N., GUZMÁN-GRAJALES, S., PARROTTA, J. A., ASBURY, C. E., WALKER, L. R. & WAIDE, R. B. 1995. Nitrogen immobilization by decomposing woody debris and the recovery of tropical wet forest from hurricane damage. Oikos 72:314332.Google Scholar