Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T19:29:06.211Z Has data issue: false hasContentIssue false

Fragment size and local flower density influence seed set of the understorey tree Paypayrola blanchetiana (Violaceae) in Brazilian Atlantic rain forest

Published online by Cambridge University Press:  01 June 2012

Marcus Braun*
Affiliation:
Institute of Systematic Botany and Ecology, University of Ulm, 89081 Ulm, Germany
Daniel Piechowski
Affiliation:
Max Planck Institute for Ornithology, 78315 Radolfzell, Germany
Marian Kazda
Affiliation:
Institute of Systematic Botany and Ecology, University of Ulm, 89081 Ulm, Germany
Gerhard Gottsberger
Affiliation:
Botanical Garden and Herbarium, University of Ulm, 89081 Ulm, Germany
*
1Corresponding author. Email: [email protected]

Abstract:

Reproductive success of many plant species declines in fragmented habitat, but this effect is little studied in trees of tropical rain forest understorey. Paypayrola blanchetiana (Violaceae) is a continuous-flowering treelet endemic to the Atlantic rain forest of north-east Brazil. Plants are distributed in localized patches. Flower, fruit and seed production of a total of 86 trees was quantified in six forest fragments, each belonging to one of two categories of size (> 300 ha vs. < 50 ha) and fragmentation history (isolated for c. 25–30 y vs. at least c. 50 y). Relative fruit set (fruits/flower) and seed set (seeds/ovule) were calculated for a spatial (total fruit set of tree individuals) and a temporal analysis (combined month-by-month fruit set in patches in response to different flowering intensities). Fruit set (1%) and seed set (0.6%) were very low, but variable among trees. Plants in large fragments had significantly higher fruit set and seed set than plants in small fragments. Trees in older fragments, however, displayed similar fruit and seed set to those in recently created ones. We found no interaction effect on seed set of fragment size and isolation time. Seed set was a negative function of patch flower density. Possible drivers of the observed patterns are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGUILAR, R. & GALETTO, L. 2004. Effects of forest fragmentation on male and female reproductive success in Cestrum parqui. Oecologia 138:513520.Google ScholarPubMed
AGUILAR, R., ASHWORTH, L., GALETTO, L. & AIZEN, M. A. 2006. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecology Letters 9:968980.CrossRefGoogle ScholarPubMed
AGUILAR, R., QUESADA, M., ASHWORTH, L., HERRERIO-DIEGO, Y. & LOBO, J. 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology 17:51775188.CrossRefGoogle ScholarPubMed
AIZEN, M. A. & FEINSINGER, P. 1994. Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330351.CrossRefGoogle Scholar
AUGSPURGER, C. K. 1980. Mass-flowering of a tropical shrub (Hybanthus prunifolius): influence on pollinator attraction and movement. Evolution 34:475488.Google ScholarPubMed
BRAUN, M., DÖTTERL, S., SCHLINDWEIN, C. & GOTTSBERGER, G. 2012. Can nectar be a disadvantage? Contrasting pollination natural histories of two woody Violaceae from the Neotropics. International Journal of Plant Sciences 173:161171.CrossRefGoogle Scholar
CONDIT, R., ASHTON, P. S., BAKER, P., BUNJAVEJCHEVIN, S., GUNATILLEKE, S., GUNATILLEKE, N., HUBBELL, S. P., FORSTER, R. B., ITOH, A., LaFRANKIE, J. V., LEE, H. S., LOSOS, E., MANOKARAN, N., SUKUMAR, R. & YAMAKURA, T. 2000. Spatial patterns in the distributions of tropical tree species. Science 288:14141418.CrossRefGoogle ScholarPubMed
ECKERT, C. G., KALISZ, S., GEBER, M. A., SARGENT, R., ELLE, E., CHEPTOU, P. O., GOODWILLIE, C., JOHNSTON, M. O., KELLY, J. K., MOELLER, D. A., PORCHER, E., REE, R. H., VALLEJO-MARIN, M. & WINN, A. A. 2010. Plant mating systems in a changing world. Trends in Ecology and Evolution 25:3542.CrossRefGoogle Scholar
FUCHS, E. J., LOBO, J. A. & QUESADA, M. 2003. Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conservation Biology 17:149157.CrossRefGoogle Scholar
GHAZOUL, J. 2005. Pollen and seed dispersal among dispersed plants. Biological Reviews 80:413443.CrossRefGoogle ScholarPubMed
GHAZOUL, J. & McLEISH, M. 2001. Reproductive ecology of tropical forest trees in logged and fragmented habitats in Thailand and Costa Rica. Plant Ecology 153:335345.CrossRefGoogle Scholar
GIGORD, L., LAVIGNE, C. & SHYKOFF, J. A. 1998. Partial self-incompatibility and inbreeding depression in a native tree species of La Réunion (Indian Ocean). Oecologia 117:342352.CrossRefGoogle Scholar
GOVERDE, M., SCHWEIZER, K., BAUR, B. & ERHARDT, A. 2002. Small-scale habitat fragmentation effects on pollinator behaviour: experimental evidence from the bumblebee Bombus veteranus on calcareous grasslands. Biological Conservation 104:293299.CrossRefGoogle Scholar
JENNERSTEN, O. 1988. Pollination in Dianthus deltoides (Caryophyllaceae): effects of habitat fragmentation on visitation and seed set. Conservation Biology 2:359366.CrossRefGoogle Scholar
KIMMEL, T. M., PIECHOWSKI, D. & GOTTSBERGER, G. 2008. The history of fragmentation of the lowland Atlantic Forest of Pernambuco, Brazil. Bioremediation, Biodiversity and Bioavailability 2:14.Google Scholar
KREBS, S. L. & HANCOCK, J. F. 1990. Early-acting inbreeding depression and reproductive success in the highbush blueberry, Vaccinium corymbosum L. Oecologia 79:825832.Google ScholarPubMed
LEHTILÄ, K. & STRAUSS, S. Y. 1997. Leaf damage by herbivores affects attractiveness to pollinators in wild radish, Raphanus raphanistrum. Oecologia 111:396403.Google ScholarPubMed
LEVIN, D. A. 1984. Inbreeding depression and proximity-dependent crossing success in Phlox drummondii. Evolution 38:116127.Google ScholarPubMed
MARQUIS, R. 1988. Phenological variation in the neotropical understory shrub Piper arieianum: causes and consequences. Ecology 69:15521565.CrossRefGoogle Scholar
MARTINI, A. M. Z., FIASCHI, P., AMORIM, A. M. & DA PAIXÃO, J. L. 2007. A hot-point within a hot-spot: a high diversity site within Brazil's Atlantic Forest. Biodiversity and Conservation 16:31113128.CrossRefGoogle Scholar
MELCHIOR, H. 1925. Violaceae. Pp. 329377 in Engler, H. G. A. & Prantl, K. A. (eds.). Die natürlichen Pflanzenfamilien. Volume 21. Duncker & Humblot, Berlin.Google Scholar
MILET-PINHEIRO, P. & SCHLINDWEIN, C. 2005. Do euglossine males (Apidae, Euglossini) leave tropical rainforest to collect fragrances in sugarcane monocultures? Revista Brasileira de Zoologia 22:853858.CrossRefGoogle Scholar
MUÑOZ, A. A., CELEDON-NEGHME, C., CAVIERES, L. A. & ARROYO, M. T. K. 2005. Bottom-up effects of nutrient availability on flower production, pollinator visitation, and seed output in a high-Andean shrub. Oecologia 143:126135.CrossRefGoogle Scholar
MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.CrossRefGoogle ScholarPubMed
OLIVEIRA, P. E., GIBBS, P. E. & BARBOSA, A. A. 2004. Moth pollination of woody species in the cerrados of Central Brazil: a case of so much owed to so few? Plant Systematics and Evolution 245:4154.CrossRefGoogle Scholar
PINHEIRO, J. C. & BATES, D. M. 2000. Mixed-effects models in S and S-PLUS. Springer, New York. 537 pp.CrossRefGoogle Scholar
ROCHA, O. J. & AGUILAR, G. 2001. Reproductive biology of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica: a comparison between trees left in pastures and trees in continuous forest. American Journal of Botany 88:16071614.CrossRefGoogle ScholarPubMed
SOMANATHAN, H. & BORGES, R. M. 2000. Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biological Conservation 94:243256.CrossRefGoogle Scholar
SOMANATHAN, H. & BORGES, R. M. 2001. Nocturnal pollination by the carpenter bee Xylocopa tenuiscapa (Apidae) and the effect of floral display on fruit set of Heterophragma quadriloculare (Bignoniaceae) in India. Biotropica 33:7889.CrossRefGoogle Scholar
STEFFAN-DEWENTER, I. & TSCHARNTKE, T. 1999. Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432440.CrossRefGoogle ScholarPubMed
STEPHENSON, A. G. 1981. Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology, Evolution and Systematics 12:253279.CrossRefGoogle Scholar
TRINDADE, M. B., LINS-E-SILVA, A. C. B., DA SILVA, H. P., FIGUEIRA, S. B. & SCHESSL, M. 2008. Fragmentation of the Atlantic Rainforest in the Northern Coastal Region of Pernambuco, Brazil: recent changes and implications for conservation. Bioremediation, Biodiversity and Bioavailability 2:513.Google Scholar
VALDIVIA, C. E., SIMONETTI, J. A. & HENRIQUEZ, C. A. 2005. Depressed pollination of Lapageria rosea Ruiz et Pav. (Philesiaceae) in the fragmented temperate rainforest of southern South America. Biodiversity and Conservation 15:18451856.CrossRefGoogle Scholar
VELOSO, H. P., RANGEL FILHO, A. L. R. & LIMA, J. C. A. 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro.Google Scholar
WARD, M., DICK, C. W., GRIBEL, R. & LOWE, A. J. 2005. To self, or not to self . . . a review of outcrossing and pollen-mediated gene flow in neotropical trees. Heredity 95:246254.CrossRefGoogle ScholarPubMed
WILCOCK, C. & NEILAND, R. 2002. Pollination failure in plants: why it happens and when it matters. Trends in Plant Science 7:270277.CrossRefGoogle ScholarPubMed