Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T16:41:23.219Z Has data issue: false hasContentIssue false

Diversity and composition of Amazonian moths in primary, secondary and plantation forests

Published online by Cambridge University Press:  01 May 2009

Joseph Hawes*
Affiliation:
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
Catarina da Silva Motta
Affiliation:
Departamento de Entomologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 478, Manaus, AM 69011-970, Brazil
William L. Overal
Affiliation:
Departamento de Entomologia, Museu Paraense Emílio Goeldi (MPEG), Av. Perimetral 1901, Bairro Terra Firme, Belém, PA 66077-530, Brazil
Jos Barlow
Affiliation:
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW, UK
Toby A. Gardner
Affiliation:
Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-000, Brazil
Carlos A. Peres
Affiliation:
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
*
*Corresponding author. Email: [email protected]

Abstract:

The response of tropical fauna to landscape-level habitat change is poorly understood. Increased conversion of native primary forest to alternative land-uses, including secondary forest and exotic tree plantations, highlights the importance of assessing diversity patterns within these forest types. We sampled 1848 moths from 335 species of Arctiidae, Saturniidae and Sphingidae, over a total of 30 trap-nights. Sampling was conducted during the wet season 2005, using three light-traps at 15 sites within areas of primary forest, secondary forest and Eucalyptus urograndis plantations in northern Brazilian Amazonia. The Jari study region provides one of the best opportunities to investigate the ecological consequences of land-use change, and this study is one of the first to examine patterns of diversity for a neotropical moth assemblage in a human-dominated landscape in lowland Amazonia. We found that the three moth families responded consistently to disturbance in terms of abundance and community structure but variably in terms of species richness, in a manner apparently supporting a life-history hypothesis. Our results suggest that secondary forests and Eucalyptus plantations can support a substantial level of moth diversity but also show that these forest types hold assemblages with significantly distinct community structures and composition from primary forest. In addition, the ability of these converted land-uses to support primary forest species may be enhanced by proximity to surrounding primary forest, an issue which requires consideration when assessing the diversity and composition of mobile taxa in human-dominated landscapes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AXMACHER, J. C. & FIEDLER, K. 2004. Manual versus automatic moth sampling at equal light sources – a comparison of catches from Mt. Kilimanjaro. Journal of the Lepidopterists' Society 58:196202.Google Scholar
BAKER, R. R. & SADOVY, Y. 1978. The distance and nature of the light-trap response of moths. Nature 276:818821.CrossRefGoogle Scholar
BARLOW, H. S. & WOIWOD, I. P. 1989. Moth diversity of a tropical forest in Peninsular Malaysia. Journal of Tropical Ecology 5:3750.CrossRefGoogle Scholar
BARLOW, J., HAUGAASEN, T. & PERES, C. A. 2002. Effects of ground fires on understorey bird assemblages in Amazonian forests. Biological Conservation 105;157169.CrossRefGoogle Scholar
BARLOW, J., GARDNER, T. A., ARUJO, I. S., BONALDO, B. A., COSTA, J. E., ESPOSITO, M. C., FERREIRA, L. V., HAWES, J. E., HERNANDEZ, M. I. M., LEITE, R. N., LO-MAN-HUNG, N. F., MALCOLM, J. R., MARTINS, M. B., MESTRE, L. A. M., NUNES-GUTJAHR, A. L., OVERAL, W. L., PARRY, L., PETERS, S. L., RIBEIRO-JUNIOR, M. A., DA SILVA MOTTA, C., DA SILVA, M. N. F. & PERES, C. A. 2007. Quantifying the biodiversity value of tropical primary, secondary and plantation forests. Proceedings of the National Academy of Sciences USA 104:1855518560.CrossRefGoogle ScholarPubMed
BECK, J. & LINSENMAIR, K. E. 2006. Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast-Asian hawkmoths (Lepidoptera: Sphingidae). Journal of Research on the Lepidoptera 39:1837.CrossRefGoogle Scholar
BECK, J. & NÄSSIG, W. A. 2007. Diversity and abundance patterns, and revised checklist, of saturniid moths from Borneo (Lepidoptera: Saturniidae). Nachrichten des Entomologischen Vereins Apollo 28:155164.Google Scholar
BECK, J., SCHULZE, C. H., LINSENMAIR, K. E. & FIEDLER, K. 2002. From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. Journal of Tropical Ecology 18:3351.CrossRefGoogle Scholar
BECK, J., KITCHING, I. J. & LINSENMAIR, K. E. 2006. Effects of habitat disturbance can be subtle yet significant: biodiversity of hawkmoth-assemblages (Lepidoptera: Sphingidae) in Southeast-Asia. Biodiversity and Conservation 15:465486.CrossRefGoogle Scholar
BREHM, G. 2007. Contrasting patterns of vertical stratification in two moth families in a Costa Rican lowland rain forest. Basic and Applied Ecology 8:4454.CrossRefGoogle Scholar
BREHM, G., SUSSENBACH, D. & FIEDLER, K. 2003. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26:456466.CrossRefGoogle Scholar
BROOK, B. W., BRADSHAW, C. J. A., KOH, L. P. & SODHI, N. S. 2006. Momentum drives the crash: mass extinction in the tropics. Biotropica 38:302305.CrossRefGoogle Scholar
BUTLER, L., KONDO, C., BARROWS, E. M. & TOWNSEND, E. C. 1999. Effects of weather conditions and trap types on sampling for richness and abundance of forest macrolepidoptera. Environmental Entomology 28:795811.CrossRefGoogle Scholar
CHEY, V. K., HOLLOWAY, J. D. & SPEIGHT, M. R. 1997. Diversity of moths in forest plantations and natural forests in Sabah. Bulletin of Entomological Research 87:371385.CrossRefGoogle Scholar
CLARKE, K. R. & WARWICK, R. M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. (Second edition). Primer-E Ltd, Plymouth. 144 pp.Google Scholar
COUTINHO, S. D. C. & PIRES, M. J. P. 1996. Jari: um banco genético para o futuro. Imago Editora Ltda., Rio de Janeiro. 242 pp.Google Scholar
D'ABRERA, B. 1995. Saturniidae Mundi: saturniid moths of the world. Volume 1. Automeris Press, Keltern. 177 pp.Google Scholar
D'ABRERA, B. 1998. Saturniidae Mundi: saturniid moths of the world. Volume 3. Automeris Press, Keltern. 171 pp.Google Scholar
DAILY, G. C. 2001. Ecological forecasts. Nature 411:245.CrossRefGoogle ScholarPubMed
DEVRIES, P. J., WALLA, T. R. & GREENEY, H. F. 1999. Species diversity in spatial and temporal dimensions of fruit-feeding butterflies from two Ecuadorian rainforests. Biological Journal of the Linnean Society 68:333353.CrossRefGoogle Scholar
DUMBRELL, A. J. & HILL, J. K. 2005. Impacts of selective logging on canopy and ground assemblages of tropical forest butterflies: implications for sampling. Biological Conservation 125:123131.CrossRefGoogle Scholar
DUNN, R. R. 2004. Managing the tropical landscape: a comparison of the effects of logging and forest conversion to agriculture on ants, birds, and lepidoptera. Forest Ecology and Management 191:215224.CrossRefGoogle Scholar
EVANS, J. & TURNBULL, J. 2004. Plantation forestry in the tropics. (Third edition). Oxford University Press, Oxford. 488 pp.CrossRefGoogle Scholar
FIEDLER, K. & SCHULZE, C. H. 2004. Forest modification affects diversity (but not dynamics) of speciose tropical pyraloid moth communities. Biotropica 36:615627.Google Scholar
FISHER, R. A., CORBET, A. S. & WILLIAMS, C. B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12:4258.CrossRefGoogle Scholar
FRY, R. & WARING, P. 2001. A guide to moth traps and their use. (Second edition). The Amateur Entomologists' Society, London. 68 pp.Google Scholar
GARDNER, T. A., BARLOW, J., PARRY, L. W. & PERES, C. A. 2007. Predicting the uncertain future of tropical forest species in a data vacuum. Biotropica 39:2530.CrossRefGoogle Scholar
GARDNER, T. A., BARLOW, J., ARUJO, I. S., AVILA-PIRES, T. C. S., BONALDO, B. A., COSTA, J. E., ESPOSITO, M. C., FERREIRA, L. V., HAWES, J. E., HERNANDEZ, M. I. M., HOOGMOED, M., LEITE, R. N., LO-MAN-HUNG, N. F., MALCOLM, J. R., MARTINS, M. B., MESTRE, L. A. M., MIRANDA-SANTOS, R., NUNES-GUTJAHR, A. L., OVERAL, W. L., PARRY, L., PETERS, S. L., RIBEIRO-JUNIOR, M. A., DA SILVA, M. N. F., DA SILVA MOTTA, C. & PERES, C. A. 2008. The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters 11:139150.CrossRefGoogle ScholarPubMed
GOTELLI, N. J. & COLWELL, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.CrossRefGoogle Scholar
HARTLEY, M. J. 2002. Rationale and methods for conserving biodiversity in plantation forests. Forest Ecology and Management 155:8195.CrossRefGoogle Scholar
HILT, N. & FIEDLER, K. 2005. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Diversity and Distributions 11:387398.CrossRefGoogle Scholar
HILT, N. & FIEDLER, K. 2006 Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how different are subfamilies and tribes? Journal of Biogeography 33:108120.CrossRefGoogle Scholar
HILT, N. & FIEDLER, K. 2008. Successional stages of faunal regeneration – a case study on megadiverse moths. Pp. 443449 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies Volume 198. Springer Verlag, Berlin.CrossRefGoogle Scholar
HILT, N., BREHM, G. & FIEDLER, K. 2006 Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes. Journal of Tropical Ecology 22:155166.CrossRefGoogle Scholar
HOLLOWAY, J. D., KIRKSPRIGGS, A. H. & CHEY, V. K. 1992. The response of some rain-forest insect groups to logging and conversion to plantation. Philosophical Transactions of the Royal Society of London Series B–Biological Sciences 335:425436.Google Scholar
HORNER-DEVINE, M. C., DAILY, G. C., EHRLICH, P. R. & BOGGS, C. L. 2003. Countryside biogeography of tropical butterflies. Conservation Biology 17:168177.CrossRefGoogle Scholar
INTACHAT, J. & WOIWOD, I. P. 1999. Trap design for monitoring moth biodiversity in tropical rainforests. Bulletin of Entomological Research 89:153163.CrossRefGoogle Scholar
JANZEN, D. H. 1984. Two ways to be a tropical big moth: Santa Rosa saturniids and sphingids. Oxford Surveys in Evolutionary Biology 1:85140.Google Scholar
JANZEN, D. H. 1987. Insect diversity of a Costa Rican dry forest – why keep it, and how. Biological Journal of the Linnean Society 30:343356.CrossRefGoogle Scholar
KANOWSKI, J., CATTERALL, C. P. & WARDELL-JOHNSON, G. W. 2005. Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. Forest Ecology and Management 208:359372.CrossRefGoogle Scholar
KITCHING, I. J. & CADIOU, J. M. 2000. Hawkmoths of the world: an annotated and illustrated revisionary checklist (Lepidoptera: Sphingidae). Natural History Museum, London & Cornell University Press, Ithaca. 226 pp.Google Scholar
KITCHING, R. L., ORR, A. G., THALIB, L., MITCHELL, H., HOPKINS, M. S. & GRAHAM, A. W. 2000. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. Journal of Applied Ecology 37:284297.CrossRefGoogle Scholar
KOH, L. P., SODHI, N. S. & BROOK, B. W. 2004. Ecological correlates of extinction proneness in tropical butterflies. Conservation Biology 18:15711578.CrossRefGoogle Scholar
LEMAIRE, C. 1988. Les Saturniidae Americains – The Saturniidae of America – Los Saturniidae Americanos. Ceratocampinae. Museo Nacional de Costa Rica, San José. 480 pp.Google Scholar
LEMMON, P. E. 1957. A new instrument for measuring forest overstorey density. Journal of Forestry 55:667668.Google Scholar
LEWINSOHN, T. M., FREITAS, A. V. L. & PRADO, P. I. 2005. Conservation of terrestrial invertebrates and their habitats in Brazil. Conservation Biology 19:640645.CrossRefGoogle Scholar
LINDENMAYER, D. B. & HOBBS, R. J. 2004. Fauna conservation in Australian plantation forests – a review. Biological Conservation 119:151168.CrossRefGoogle Scholar
MAGURRAN, A. E. 2004. Measuring biological diversity. Blackwell Science, Oxford. 260 pp.Google Scholar
MATTILA, N., KAITALA, V., KOMONEN, A., KOTIAHO, J. S. & PÄIVINEN, J. 2006. Ecological determinants of distribution decline and risk of extinction in moths. Conservation Biology 20:11611168.CrossRefGoogle ScholarPubMed
MUIRHEAD-THOMSON, R. C. 1991. Trap responses of flying insects. Academic Press, London. 287 pp.Google Scholar
NEEFF, T., LUCAS, R. M., DOS SANTOS, J. R., BRONDIZIO, E. S. & FREITAS, C. C. 2006. Area and age of secondary forests in Brazilian Amazonia 1978–2002: an empirical estimate. Ecosystems 9:609623.CrossRefGoogle Scholar
PIÑAS-RUBIO, F. & PESÁNTEZ, I. M. 2000. Mariposas del Ecuador/Butterflies & Moths of Ecuador. Volume 1: Géneros. Pontificia Universidad Católica del Ecuador, Quito. 115 pp.Google Scholar
PIÑAS RUBIO, F., RAB-GREEN, S., ONORE, G. & PESÁNTEZ, I. M. 2000. Mariposas del Ecuador/Butterflies & Moths of Ecuador. Volume 20: Arctiidae (Arctiinae y Pericopinae). Pontificia Universidad Católica del Ecuador, Quito. 215 pp.Google Scholar
PRICE, P. W., DINIZ, I. R., MORAIS, H. C. & MARQUES, E. S. A. 1995. The abundance of insect herbivore species in the tropics: the high local richness of rare species. Biotropica 27:468478.CrossRefGoogle Scholar
RICKETTS, T. H., DAILY, G. C., EHRLICH, P. R. & FAY, J. P. 2001. Countryside biogeography of moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conservation Biology 15:378388.CrossRefGoogle Scholar
SCHULZE, C. H. & FIEDLER, K. 2003. Hawkmoth diversity in Northern Borneo does not reflect the influence of anthropogenic habitat disturbance. Ecotropica 9:99102.Google Scholar
SCHULZE, C. H., LINSENMAIR, K. E. & FIEDLER, K. 2001. Understorey versus canopy – patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecology 153:133152.CrossRefGoogle Scholar
SHAHABUDDIN, G. & TERBORGH, J. W. 1999. Frugivorous butterflies in Venezuelan forest fragments: abundance, diversity and the effects of isolation. Journal of Tropical Ecology 15:703722.CrossRefGoogle Scholar
SPALDING, A. & PARSONS, M. 2004. Light trap transects as a field method for ascertaining the habitat preferences of night-flying Lepidoptera, using Mythimna turca (Linnaeus 1761) (Lepidoptera: Noctuidae) as an example. Journal of Insect Conservation 8:185195.CrossRefGoogle Scholar
STORK, N. E., SRIVASTAVA, D. S., WATT, A. D. & LARSEN, T. B. 2003. Butterfly diversity and silvicultural practice in lowland rainforests of Cameroon. Biodiversity and Conservation 12:387410.CrossRefGoogle Scholar
SUMMERVILLE, K. S. & CRIST, T. O. 2003. Determinants of lepidopteran community composition and species diversity in eastern deciduous forests: roles of season, eco-region and patch size. Oikos 100:134148.CrossRefGoogle Scholar
WILLOTT, S. J. 1999. The effects of selective logging on the distribution of moths in a Bornean rainforest. Philosophical Transactions of the Royal Society of London Series B–Biological Sciences 354:17831790.CrossRefGoogle Scholar
WILSON, E. O. 1987. The little things that run the world (the importance and conservation of invertebrates). Conservation Biology 1:344346.CrossRefGoogle Scholar
YELA, J. L. & HOLYOAK, M. 1997. Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environmental Entomology 26:12831290.CrossRefGoogle Scholar