Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T04:26:03.632Z Has data issue: false hasContentIssue false

Disturbance intensity and seasonality affect the resprouting ability of the neotropical dry-forest tree Acacia pennatula: do resources stored below-ground matter?

Published online by Cambridge University Press:  02 August 2011

Guille Peguero*
Affiliation:
FAREM (Regional Multidisciplinary Faculty) – UNAN (National Autonomous University of Nicaragua), Barrio 14 Abril, Estelí, Nicaragua CREAF (Centre for Ecological Research and Forestry Applications), Autonomous University of Barcelona, E-08193 Bellaterra, Catalonia, Spain
Josep Maria Espelta
Affiliation:
CREAF (Centre for Ecological Research and Forestry Applications), Autonomous University of Barcelona, E-08193 Bellaterra, Catalonia, Spain
*
1Corresponding author. Email: [email protected]

Abstract:

Many plant species in tropical dry forests partly base their ability to persist after disturbance on resprouting. Yet little is known if this ability can be affected by the intensity and seasonality of disturbance and whether the amount of resources (starch, N, P) stored in the taproot may constrain this response. We investigated resprouting after experimental clipping or burning, applied before or after the dry season and repeatedly in Acacia pennatula individuals in wooded rangelands of North-West Nicaragua. Each treatment was applied to 12 trees and replicated in six plots. One year after the onset of the experiment, survival and biomass recovery were significantly lower in burned than in clipped individuals (78% ± 4% and 75.3 ± 8.0 g vs. 94% ± 2% and 79.1 ± 6.8 g; mean ± SE). Whatever the disturbance applied, trees disturbed after the dry season significantly showed the lowest survival, growth and concentration of N and P. These results suggest that resprouting in dry tropical species may be constrained by intense disturbances (e.g. burning) but especially if they occur towards the end of the dry season. This phenological constraint could be due to the reduced availability of N and P as this dry season progresses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BOND, W. J. & ARCHIBALD, S. 2003. Confronting complexity: fire policy choices in South African savanna parks. International Journal of Wildland Fire 12:381389.CrossRefGoogle Scholar
BOND, W. J. & KEELEY, J. E. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20:387394.CrossRefGoogle ScholarPubMed
BONFIL, C., CORTÉS, P., ESPELTA, J. M. & RETANA, J. 2004. The role of disturbance in the co-existence of the evergreen Quercus ilex and the deciduous Quercus cerrioides. Journal of Vegetation Science 15:423430.Google Scholar
BOWEN, B. J. & PATE, J. S. 1993. The significance of root starch in post-fire shoot recovery of the resprouter Stirlingia latifolia R. Br. (Proteaceae). Annals of Botany 72:716.CrossRefGoogle Scholar
CANADELL, J. & LÓPEZ-SORIA, L. 1998. Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Functional Ecology 12:3138.CrossRefGoogle Scholar
CASASSOLA, F. 2000. Productividad de los sistemas silvopastoriles tradicionales en Moropotente, Estelí, Nicaragua. M.Sc. thesis, CATIE, Turrialba, Costa Rica.Google Scholar
CASTELL, C., TERRADAS, J. & TENHUNEN, J. D. 1994. Water relations, gas exchange, and growth of resprouts in mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia 98:201211.CrossRefGoogle ScholarPubMed
CERVANTES, V., ARRIAGA, V., MEAVE, J. & CARABIAS, J. 1998. Growth analysis of nine multipurpose woody legumes native from southern Mexico. Forest Ecology & Management 110:329341.CrossRefGoogle Scholar
CHAPIN, F. S., SCHULTZE, E. D. & MOONEY, H. A. 1990. The ecology and economics of storage in plants. Annual Review of Ecology, Evolution and Systematics 21:423447.CrossRefGoogle Scholar
CRUZ, A., PÉREZ, B., QUINTANA, J. R. & MORENO, J. M. 2002. Resprouting in the Mediterranean type shrub Erica australis affected by soil resource availability. Journal of Vegetation Science 13:641650.Google Scholar
CRUZ, A., PÉREZ, B. & MORENO, J. M. 2003a. Plant stored reserves do not drive resprouting of the lignotuberous shrub Erica australis. The New Phytologist 157:251261.CrossRefGoogle Scholar
CRUZ, A., PÉREZ, B. & MORENO, J. M. 2003b. Resprouting of the Mediterranean-type shrub Erica australis with modified lignotuber carbohydrate content. Journal of Ecology 91:348356.CrossRefGoogle Scholar
EBINGER, J. E., SEIGLER, D. S. & CLARKE, H. D. 2000. Taxonomic revision of South American species of the genus Acacia subgenus Acacia (Fabaceae: Mimosoideae). Monographs in Systematic Botany 25:588617.CrossRefGoogle Scholar
ESPELTA, J. M., SABATÉ, S. & RETANA, J. 1999. Resprouting dynamics. Pp. 6173 in Rodà, F., Retana, J., Gracia, C. A. & Bellot, J. (eds.). Ecology of Mediterranean evergreen oak forests. Springer, Berlin.CrossRefGoogle Scholar
GIBSON, D. J., HARTNETT, D. C. & MERILL, G. L. S. 1990. Fire temperature heterogeneity in contrasting fire prone habitats – Kansas tallgrass prairie and Florida sandhill. Bulletin of the Torrey Botanical Club 117:349356.CrossRefGoogle Scholar
HERBERT, D. A. & FOWNES, J. H. 1995. Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29:223235.CrossRefGoogle Scholar
HODGKINSON, K. C. 1992. Water relations and growth of shrubs before and after fire in a semi-arid woodland. Oecologia 90:467473.CrossRefGoogle Scholar
IPCC. 2007. Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 996 pp.Google Scholar
JANZEN, D. H. 2002. Tropical dry forest: Area de Conservación de Guanacaste, Northwestern Costa Rica. Pp. 559583 in Perrow, M. & Davy, A. J. (eds.). Handbook of ecological restoration, volume II. Cambridge University Press, Cambridge.Google Scholar
JANZEN, D. H. & MARTIN, P. S. 1982. Neotropical anachronisms: the fruits the Gomphotheres ate. Science 215:1927.CrossRefGoogle ScholarPubMed
KLIMEŠOVÁ, J. & KLIMEŠ, L. 2007. Bud banks and their role in vegetative regeneration – a literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology, Evolution and Systematics 8:115129.CrossRefGoogle Scholar
LLORET, F. & LÓPEZ-SORIA, L. 1993. Resprouting of Erica multiflora after experimental fire treatments. Journal of Vegetation Science 4:367374.CrossRefGoogle Scholar
LUGO, A. E. & MURPHY, P. G. 1986. Nutrient dynamics of a Puerto Rican subtropical dry forest. Journal of Tropical Ecology 2:5572.CrossRefGoogle Scholar
MANNING, A. D., FISCHER, J. & LINDENMAYER, D. B. 2006. Scattered trees are keystone structures – implications for conservation. Biological Conservation 132:311321.CrossRefGoogle Scholar
McNAUGHTON, S. J. C. 1983. Compensatory plant growth as a response to herbivory. Oikos 40:329336.CrossRefGoogle Scholar
MEYER, K. M., WARD, D., MOUSTAKAS, A. & WIEGAND, K. 2005. Big is not better: small Acacia mellifera shrubs are more vital after fire. African Journal of Ecology 43:31136.CrossRefGoogle Scholar
MIYANISHI, K. & KELLMAN, M. 1986. The role of root nutrient reserves in regrowth of two savanna shrubs. Canadian Journal of Botany 64:12441248.CrossRefGoogle Scholar
NGUYEN, N. T., MOHAPATRA, P. K. & FUJITA, K. 2006. Elevated CO2 alleviates the effects of low P on the growth of N2-fixing Acacia auriculiformis and Acacia mangium. Plant and Soil 285:369379.CrossRefGoogle Scholar
PURATA, S. E., GREENBERG, R., BARRIENTOS, V. & LÓPEZ-PORTILLO, J. 1999. Economic potential of the Huizache, Acacia pennatula (Mimosoideae) in Central Veracruz, Mexico. Economic Botany 53:1529.CrossRefGoogle Scholar
RIBA, M. 1998. Effects of intensity and frequency of crown damage on resprouting Erica arborea L. (Ericaceae). Acta Oecologica 19:916.CrossRefGoogle Scholar
RIBET, J. & DREVON, J. J. 1996. The phosphorus requirement of N2-fixing and urea-fed Acacia mangium. New Phytologist 132:383390.CrossRefGoogle ScholarPubMed
SARDANS, J. & PEÑUELAS, J. 2007. Drought changes phosphorus and potassium accumulation patterns in an Evergreen Mediterranean forest. Functional Ecology 21:191201.CrossRefGoogle Scholar
SAURA-MAS, S. & LLORET, F. 2009. Linking post-fire regenerative strategy and leaf nutrient content in Mediterranean woody plants. Perspectives in Plant Ecology, Evolution and Systematics 11:219229.CrossRefGoogle Scholar
SCHUTZ, A. E. N., BOND, W. J. & CRAMER, M. D. 2009. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160:235246.CrossRefGoogle Scholar
TARRASÓN, D., URRUTIA, J. T., RAVERA, F., HERRERA, E., ANDRÉS, P. & ESPELTA, J. M. 2010. Conservation status of tropical dry forests remnants in Nicaragua: Do ecological indicators and social perception tally? Biodiversity and Conservation 19;813827.CrossRefGoogle Scholar
VESK, P. A. & WESTOBY, M. 2004. Funding the bud bank: a review of the costs of buds. Oikos 106:200208.CrossRefGoogle Scholar
VIEIRA, D. L. M. & SCARIOT, A. 2006. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology 14:1120.CrossRefGoogle Scholar
VITOUSEK, P. M. 1999. Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems 2:505510.CrossRefGoogle Scholar
VITOUSEK, P. M. & FARRINGTON, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:6375.CrossRefGoogle Scholar
VITOUSEK, P. M., PORDER, S., HOULTON, B. Z. & CHADWICK, O. A. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications 20:515.CrossRefGoogle ScholarPubMed
WRIGHT, B. R. & CLARKE, P. J. 2007. Resprouting responses of Acacia shrubs in the Western desert of Australia – fire severity, interval and season influence survival. International Journal of Wildland Fire 16:317323.CrossRefGoogle Scholar
WRIGHT, I. J., REICH, P. B., WESTOBY, M., ACKERLY, D. A., BARUCH, Z., BONGERS, F., CAVENDER-BARES, J., CHAPIN, T., CORNELISSEN, J. H. C., DIEMER, M., FLEXAS, J., GARNIER, E., GROOM, P. K., GULIAS, J., HIKOSAKA, K., LAMONT, B. B., LEE, T., LEE, W., LUSK, W., MIDGLEY, J. J., NAVAS, M. L., NIINEMETS, Ü., OLEKSYN, J., OSADA, N., POORTER, H., POOT, P., PRIOR, L., PYANKOV, V.I., ROUMET, C., THOMAS, S. C., TJOELKER, M. G., VENEKLASS, E. J. & VILLAR, R. 2004. The worldwide leaf economics spectrum. Nature 428:821827.CrossRefGoogle ScholarPubMed