Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T10:45:15.811Z Has data issue: false hasContentIssue false

Compensatory growth responses to defoliation and light availability in two native Mexican woody plant species

Published online by Cambridge University Press:  29 January 2010

Horacio Salomón Ballina-Gómez
Affiliation:
Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
Silvia Iriarte-Vivar
Affiliation:
Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
Roger Orellana
Affiliation:
Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
Louis S. Santiago*
Affiliation:
Department of Botany and Plant Sciences and Center for Conservation Biology, University of California, 2150 Batchelor Hall, Riverside, CA92521USA
*
3Corresponding author. Email: [email protected]

Abstract:

Defoliation, often caused by herbivory, is a common cause of biomass loss for plants that can affect current and future growth and reproduction. There are three models that predict contrasting compensatory growth responses of plants to herbivory and resource availability: (1) Growth rate model, (2) Compensatory continuum hypothesis and (3) Limiting resource model. The predictions of these three models were tested on the tree Brosimum alicastrum and the liana Vitis tiliifolia. Seedlings were subjected to three levels of experimental defoliation (0%, 50% and 90% leaf removal) along a light resource gradient (1%, 9% and 65% of full sun). In both species, defoliation significantly increased leaf production rate and relative growth rate of leaf area, but not of biomass. Net assimilation rate was the strongest driver of biomass growth in both species, but leaf area ratio and specific leaf area were also important in B. alicastrum. Compensatory responses of leaf area growth in B. alicastrum were significantly greater in higher than lower light availability, consistent with the compensatory continuum hypothesis predictions, but in contrast to the growth rate model predictions. The limiting resource model offered an explanation for all possible experimental outcomes by directly considering the effects of environmental differences in resource availability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1Current address: Departamento de Ciencias Agropecuarias, Instituto Tecnológico de Conkal, km 16.3 Antigua Carretera Mérida-Motul, Conkal, Yucatán, México.
2Current address: Facultad de Ciencias, Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P. 04510, México, D.F.

References

LITERATURE CITED

ADAMS, C. D. 1972. Flowering plants of Jamaica. University of the West Indies, Mona, Jamaica.Google Scholar
ÁLVAREZ-CLARE, S. & KITAJIMA, K. 2009. Susceptibility of tree seedlings to biotic and abiotic hazards in the understory of a moist tropical forest in Panama. Biotropica 41:4756.CrossRefGoogle Scholar
BALLINA-GÓMEZ, H. S., IRIARTE-VIVAR, S., ORELLANA, R. & SANTIAGO, L. S. 2008. Crecimiento, supervivencia y herbivoría de plántulas de una especie de sotobosque neotropical, Brosimum alicastrum (Moraceae). Revista de Biología Tropical 56:20552067.CrossRefGoogle Scholar
BLUNDELL, A. G. & PEART, D. R. 2001. Growth strategies of a shade tolerant tropical tree: the interactive effects of canopy gaps and simulated herbivory. Journal of Ecology 89:608615.CrossRefGoogle Scholar
BOEGE, K. 2005. Influence of plant ontogeny on compensation to leaf damage. American Journal of Botany 92:16321640.CrossRefGoogle ScholarPubMed
CANTO, A., PARRA-TABLA, V. & GARCIA-FRANCO, J. G. 2004. Variations in leaf production and floral display of Anthurium schlechtendalii (Araceae) in response to herbivory and environment. Functional Ecology 18:692699.CrossRefGoogle Scholar
CARABIAS-LILLO, J., PROVENCIO, E., DE LA MAZA-ELVIRA, J. & RODRÍGUEZ DE LA GALA MÉNDEZ, J. B. 2000. Programa de manejo reserva de la Biosfera de Calakmul. Instituto Nacional de Ecología, México. 277 pp.Google Scholar
CHAPIN, F. S. 1991. Integrated response of plants to stress. BioScience 41:2936.CrossRefGoogle Scholar
CHAZDON, R. L. 1988. Sunflecks and their importance to forest understory plants. Advances in Ecological Research 18:163.CrossRefGoogle Scholar
CLARK, D. B. & CLARK, D. A. 1989. The role of physical damage in the seedling mortality regime of a neotropical rain forest. Oikos 55:225230.CrossRefGoogle Scholar
COLEY, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53:209233.CrossRefGoogle Scholar
COOMES, D. A. & GRUBB, P. J. 2000. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecological Monographs 70:171207.CrossRefGoogle Scholar
CRAWLEY, M. J. 1989. Insect herbivores and plant population dynamics. Annual Review of Entomology 34:531564.CrossRefGoogle Scholar
DE LA CRUZ, M. & DIRZO, R. 1987. A survey of the standing levels of herbivory in seedlings from a Mexican rain forest. Biotropica 19:98106.CrossRefGoogle Scholar
DENSLOW, J. S. 1987. Tropical rain forest gaps and tree species diversity. Annual Review of Ecology and Systematics 18:431451.CrossRefGoogle Scholar
DIRZO, R. 1984. Herbivory: a phytocentric overview. Pp. 141165 in Dirzo, R. & Sarukhán, J. (eds.). Perspectives on plant population ecology. Sinauer, Sunderland.Google Scholar
GARCÍA, E. 1988. Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). Instituto de Geografía, Universidad Nacional Autónoma de México, México. 165 pp.Google Scholar
GASSMANN, A. J. 2004. Effect of photosynthetic efficiency and water availability on tolerance of leaf removal in Amaranthus hybridus. Journal of Ecology 92:882892.CrossRefGoogle Scholar
HAWKES, C. V. & SULLIVAN, J. J. 2001. The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology 82:20452058.CrossRefGoogle Scholar
HICKS, S. & TURKINGTON, R. 2000. Compensatory growth of three herbaceous perennial species: the effects of clipping and nutrient availability. Canadian Journal of Botany 78:759767.CrossRefGoogle Scholar
HILBERT, D. W., SWIFT, D. M., DETLING, J. K. & DYER, M. I. 1981. Relative growth rates and the grazing optimization hypothesis. Oecologia 51:1418.CrossRefGoogle ScholarPubMed
HOWE, H. F. 1990. Survival and growth of juvenile Virola surinamensis in Panama: effects of herbivory and canopy closure. Journal of Tropical Ecology 6:259280.CrossRefGoogle Scholar
HUNT, R. 1978. Basic growth analysis: plant growth analysis for beginners. Unwin Hyman Ltd., London. 112 pp.Google Scholar
IRIARTE-VIVAR, S. & CHAZDON, R. L. 2005. Light-dependent seedling survival and growth of four tree species in Costa Rican second-growth rain forests. Journal of Tropical Ecology 21:383395.Google Scholar
LEE, T. D. & BAZZAZ, F. A. 1980. Effects of defoliation and competition on growth and reproduction in the annual plant Abutilon theophrasti. Journal of Ecology 68:813821.CrossRefGoogle Scholar
LIM, W. H. L. & TURNER, I. M. 1996. Resource availability and growth responses to defoliation in seedlings of three early-successional, tropical, woody species. Ecological Research 11:321324.CrossRefGoogle Scholar
LOMBARDI, J. A. 2001. Flora of Ecuador. Vitaceae. Opera Botanica Belgica 67:139.Google Scholar
LOPEZ-TOLEDO, L., MARTÍNEZ, M., VAN BREUGEL, M. & STERCK, F. J. 2008. Soil and light effects on the sapling performance of the shade-tolerant species Brosimum alicastrum (Moraceae) in a Mexican tropical rain forest. Journal of Tropical Ecology 24:629637.CrossRefGoogle Scholar
MARQUIS, R. J. 1984. Leaf herbivores decrease fitness of a tropical plant. Science 226:537539.CrossRefGoogle ScholarPubMed
MARTÍNEZ, E., SOUZA, S. M. & RAMOS-ÁLVAREZ, C. H. 2001. Listados florísticos de México: Región de Calakmul, Campeche. Instituto de Biología, Universidad Nacional Autónoma de México, México.Google Scholar
MASCHINSKI, J. & WHITHAM, T. G. 1989. The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. American Naturalist 134:119.CrossRefGoogle Scholar
MASSEY, F. P., PRESS, M. C. & HARTLEY, S. E. 2005. Long- and short-term induction of defences in seedlings of Shorea leprosula (Dipterocarpaceae): support for the carbon:nutrient balance hypothesis. Journal of Tropical Ecology 21:195201.CrossRefGoogle Scholar
MCNAUGHTON, S. J. 1979. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. American Naturalist 113:691703.CrossRefGoogle Scholar
NASCIMENTO, M. T. & HAY, J. D. 1994. The impact of simulated folivory on juveniles of Metrodorea pubescens (Rutaceae) in a gallery forest near Brasilia, Federal District, Brazil. Journal of Tropical Ecology 10:611620.CrossRefGoogle Scholar
OYAMA, K. & MENDOZA, A. 1990. Effects of defoliation on growth, reproduction, and survival of a Neotropical dioecious palm, Chamaedorea tepejilote. Biotropica 22:119123.CrossRefGoogle Scholar
PARRA-TABLA, V., RICO-GRAY, V. & CARBAJAL, M. 2004. Effect of defoliation on leaf growth, sexual expression and reproductive success of Cnidoscolus aconitifolius (Euphorbiaceae). Plant Ecology 173:153160.CrossRefGoogle Scholar
POORTER, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13:396410.CrossRefGoogle Scholar
SIMMS, E. L. 1985. Growth response to clipping and nutrient addition in Lyonia lucida and Zenobia pulverulenta. American Midland Naturalist 114:4450.CrossRefGoogle Scholar
STRAUSS, S. Y. & AGRAWAL, A. A. 1999. The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution 14:179185.CrossRefGoogle ScholarPubMed
VAN BAEL, S. A., AIELLO, A., VALDERRAMA, A., MEDIANERO, E., SAMANIEGO, M. & WRIGHT, S. J. 2004. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. Journal of Tropical Ecology 20:625633.CrossRefGoogle Scholar
WISE, M. J. & ABRAHAMSON, W. G. 2005. Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory. Oikos 109:417428.CrossRefGoogle Scholar
WISE, M. J. & ABRAHAMSON, W. G. 2007. Effects of resource availability on tolerance of herbivory: a review and assessment of three opposing models. American Naturalist 169:443454.CrossRefGoogle ScholarPubMed