Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T20:51:17.572Z Has data issue: false hasContentIssue false

Changes in climate and vegetation with altitude on Mount Batilamu, Viti Levu, Fiji

Published online by Cambridge University Press:  10 September 2018

Jacynta Anderson
Affiliation:
Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia
Gunnar Keppel*
Affiliation:
Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia Future Industries Institute, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia Biodiversity, Macroecology & Biogeography, Faculty of Forest Sciences, University of Goettingen, Büsgenweg 1, 37077 Göttingen, Germany
Sophie-Min Thomson
Affiliation:
Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia
Anthony Randell
Affiliation:
Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia
Jone Raituva
Affiliation:
South Pacific Regional Herbarium, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji
Iliesa Koroi
Affiliation:
South Pacific Regional Herbarium, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji
Ramokasa Anisi
Affiliation:
South Pacific Regional Herbarium, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji
Tanya Charlson
Affiliation:
Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia
Hans Juergen Boehmer
Affiliation:
School of Geography, Earth Science and Environment, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji
Sonia Kleindorfer
Affiliation:
College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia
*
*Corresponding author. Email: [email protected]

Abstract:

To investigate changes in vegetation and climate with altitude, we established forest plots and recorded climatic data at 100-m intervals between 550–1100 m asl on the western slopes of Mount Batilamu, Mount Koroyanitu range, Viti Levu, Fiji. Trees with a dbh ≥10 cm were identified and measured in 21 10 × 10-m plots, starting at 750 m altitude. Temperature and relative humidity sensors were deployed in two habitats, leaf litter and 50 cm above the ground, and two vegetation types, grasslands and forest, at six altitudes over a 48-h period. Two significantly distinct forest types, lowland and montane, were present. Montane forest was found at higher elevations (>950 m asl) and had significantly higher stem density. Mean temperature decreased significantly with altitude and was strongly moderated by vegetation type (lower average and less variation in forest). While average relative humidity significantly increased with altitude, it was strongly moderated by both habitat and vegetation type (higher average and less variation in leaf litter and forest). The lapse rate varied with time of day (higher during the day) and vegetation type (higher in grasslands). Therefore, vegetation and microhabitats create unique microclimates, and this should be considered when investigating current or future climatic patterns along altitudinal gradients on forested mountains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

§

Authors contributed equally to this paper.

References

LITERATURE CITED

ASH, J. 1987. Stunted cloud-forest in Taveuni, Fiji. Pacific Science 41:191199.Google Scholar
ASH, J. 1992. Vegetation ecology of Fiji: past, present, and future perspectives. Pacific Science 46:111127.Google Scholar
ASHTON, P. S. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in Plant Ecology, Evolution and Systematics 6:87104.Google Scholar
BOEHMER, H. J. 2011. Vulnerability of tropical montane rain forest ecosystems due to climate change. Pp. 789802 in Brauch, H. G., Oswald Spring, Ú., Mesjasz, C., Grin, J., Kameri-Mbote, P., Chourou, B., Dunay, P. & Birkmann, J. (eds). Coping with global environmental change, disasters and security – threats, challenges, vulnerabilities and risks. Springer, Berlin.Google Scholar
BREHM, G., COLWELL, R. K. & KLUGE, J. 2007. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography 16: 205219.Google Scholar
CLARK, D. B., HURTADO, J. & SAATCHI, S. S. 2015. Tropical rain forest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica. PLoS ONE 10:e0122905.Google Scholar
CLARKE, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Journal of Ecology 18:117143.Google Scholar
COSTION, C. M., SIMPSON, L., PERT, P. L., CARLSEN, M. M., JOHN, K. W. & CRAYN, D. 2015. Will tropical mountaintop plant species survive climate change? Identifying key knowledge gaps using species distribution modelling in Australia. Biological Conservation 191:322330.Google Scholar
DE FRENNE, P. & VERHEYEN, K. 2016. Weather stations lack forest data. Science 351:234.Google Scholar
GOTTFRIED, M., PAULI, H., FUTSCHIK, A., AKHALKATSI, M., BARANCOK, P., BENITO ALONSO, J. L., COLDEA, G., DICK, J., ERSCHBAMER, B., FERNANDEZ CALZADO, M. R., KAZAKIS, G., KRAJCI, J., LARSSON, P., MALLAUN, M., MICHELSEN, O., MOISEEV, D., MOISEEV, P., MOLAU, U., MERZOUKI, A., NAGY, L., NAKHUTSRISHVILI, G., PEDERSEN, B., PELINO, G., PUSCAS, M., ROSSI, G., STANISCI, A., THEURILLAT, J.-P., TOMASELLI, M., VILLAR, L., VITTOZ, P., VOGIATZAKIS, I. & GRABHERR, G. 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2:111115.Google Scholar
GRUBB, P. J. & WHITMORE, T. C. 1966. A comparison of montane and lowland rain forest in Ecuador: II. The climate and its effects on the distribution and physiognomy of the Forests. Journal of Ecology 54:303333.Google Scholar
HEADS, M. 2006. Seed plants of Fiji: an ecological analysis. Biological Journal of the Linnean Society 89:407431.Google Scholar
HAMILTON, L. S., JUVIK, J. O. & SCATENA, F. N. (eds). 1995. Tropical montane cloud forests. Springer, Berlin.Google Scholar
HOLL, K. D. 1999. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. Biotropica 31:229242.Google Scholar
IBANEZ, T., HELY, C. & GAUCHEREL, C. 2013. Sharp transitions in microclimatic conditions between savanna and forest in New Caledonia: insights into the vulnerability of forest edges to fire. Austral Ecology 38:680687.Google Scholar
IBANEZ, T., MUNZINGER, J., DAGOSTINI, G., HEQUET, V., RIGAULT, F., JAFFRÉ, T. & BIRNBAUM, P. 2014. Structural and floristic diversity of mixed tropical rain forest in New Caledonia: new data from the New Caledonian Plant Inventory and Permanent Plot Network (NC‐PIPPN). Applied Vegetation Science 17:386397.Google Scholar
IPCC. 2014. Climate Change 2014: Synthesis Report. Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.Google Scholar
KEPPEL, G. & TUIWAWA, M. V. 2007. Dry zone forests of Fiji: species composition, life history traits, and conservation. New Zealand Journal of Botany 45:545563.Google Scholar
KEPPEL, G., LOWE, A. J. & POSSINGHAM, H. P. 2009. Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. Journal of Biogeography 36:10351054.Google Scholar
KEPPEL, G., BUCKLEY, Y. M. & POSSINGHAM, H. P. 2010. Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology 98:8795.Google Scholar
KEPPEL, G., TUIWAWA, M. V., NAIKATINI, A. & ROUNDS, I. A. 2011. Microhabitat specialization of tropical rain-forest canopy trees in the Sovi Basin, Viti Levu, Fiji Islands. Journal of Tropical Ecology 27:491501.Google Scholar
KEPPEL, G., ANDERSON, S., WILLIAMS, C., KLEINDORFER, S. & O'CONNELL, C. 2017a. Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape. PLoS ONE 12:e0183106.Google Scholar
KEPPEL, G., ROBINSON, T. P., WARDELL-JOHNSON, G. W., YATES, C. J., VAN NIEL, K. P., BYRNE, M. & SCHUT, A. G. T. 2017b. A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot. Annals of Botany 119:289300.Google Scholar
KIRKPATRICK, J. B. & HASSALL, D. C. 1985. The vegetation and flora along an altitudinal transect through tropical forest at Mount Korobaba, Fiji. New Zealand Journal of Botany 23: 3346.Google Scholar
KÖRNER, C. 2007. The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22:569.Google Scholar
LENOIR, J., HATTAB, T. & PIERRE, G. 2017. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40:253266.Google Scholar
LOOKINGBILL, T. R. & URBAN, D. L. 2003. Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agricultural and Forest Meteorology 114: 141151.Google Scholar
MAGNUSSEN, S. & REED, D. 2015. Modelling for estimation and monitoring. Pp. 111136 in Knowledge reference for national forest assessments. Food and Agriculture Organisation of the United Nations, Rome.Google Scholar
MATAKI, M., KOSHY, K. C. & LAL, M. 2006. Baseline climatology of Viti Levu (Fiji) and current climatic trends. Pacific Science 60: 4968.Google Scholar
MCCAIN, C. M. & GRYTNES, J.-A. 2010. Elevational gradients in species richness. Pp. 110 in Encyclopedia of life sciences. John Wiley & Sons, Chichester.Google Scholar
MCVICAR, T. R., VAN NIEL, T. G., LI, L., HUTCHINSON, M. F., MU, X. & LIU, Z. 2007. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology 338:196220.Google Scholar
MOSER, G., RÖDERSTEIN, M., SOETHE, N., HERTEL, D. & LEUSCHNER, C. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. Pp. 229242 in Caldwell, M. M., Heldmaier, G., Jackson, R. B., Lange, O. L., Mooney, H. A., Schulze, E. D. & Soomer, U. (eds). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.Google Scholar
MUELLER-DOMBOIS, D. & ELLENBERG, H. 2002. Aims and methods of vegetation ecology. Blackburn Press, Caldwell. 547 pp.Google Scholar
MUELLER-DOMBOIS, D. & FOSBERG, F. R. 1998. Vegetation of the Tropical Pacific Islands. Springer, New York. 733 pp.Google Scholar
NAKAGAWA, S. & SCHIELZETH, H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4:133142.Google Scholar
NEALL, V. E. & TREWICK, S. A. 2008. The age and origin of the Pacific islands: a geological overview. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 363: 32933308.Google Scholar
OOREBEEK, M. & KLEINDORFER, S. 2008. Understorey predicts the spatial distribution of Ixodes hirsti in South Australia. Australian Journal of Zoology 56:123127.Google Scholar
OLSON, D., FARLEY, L., PATRICK, A., WATLING, D., TUIWAWA, M., MASIBALAVU, V., LENOA, L., BOGIVA, A., QAUQAU, I., ATHERTON, J., CAGINITOBA, A., TOKOTA'A, M., PRASAD, S., NAISILISILI, W., RAIKABULA, A., MAILAUTOKA, K., MORLEY, C. & ALLNUTT, T. 2010. Priority forests for conservation in Fiji: landscapes, hotspots and ecological processes. Oryx 44:5770.Google Scholar
OSBORNE, P. L. 2012. Tropical ecosystems and ecological concepts. (Second edition). Cambridge University Press, Cambridge.Google Scholar
PARMESAN, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637669.Google Scholar
PAULI, H., GOTTFRIED, M., DULLINGER, S., ABDALADZE, O., AKHALKATSI, M., ALONSO, J. L. B., COLDEA, G., DICK, J., ERSCHBAMER, B., CALZADO, R. F., GHOSN, D., HOLTEN, J. I., KANKA, R., KAZAKIS, G., KOLLÁR, J., LARSSON, P., MOISEEV, P., MOISEEV, D., MOLAU, U., MESA, J. M., NAGY, L., PELINO, G., PUŞCAŞ, M., ROSSI, G., STANISCI, A., SYVERHUSET, A. O., THEURILLAT, J.-P., TOMASELLI, M., UNTERLUGGAUER, P., VILLAR, L., VITTOZ, P. & GRABHERR, G. 2012. Recent plant diversity changes on Europe's mountain summits. Science 336: 353355.Google Scholar
PENUELAS, J. & BOADA, M. 2003. A global change-induced biome shift in the Montseny Mountains (NE Spain). Global Change Biology 9:131–131.Google Scholar
PEPIN, N. 2001. Lapse rate changes in northern England. Theoretical and Applied Climatology 68:116.Google Scholar
PEPIN, N. & LOSLEBEN, M. 2002. Climate change in the Colorado Rocky Mountains: free air versus surface temperature trends. International Journal of Climatology 22:311329.Google Scholar
RAHBEK, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18:200205.Google Scholar
RICHARDS, P. W. 1996. The tropical rain forest. An ecological study. Cambridge University Press, Cambridge.Google Scholar
SCHEFFERS, B. R., EVANS, T. A., WILLIAMS, S. E. & EDWARDS, D. P. 2014. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biology Letters 10:20140819.Google Scholar
SHANKS, R. E. 1954. Climates of the Great Smoky Mountains. Ecology 35:354361.Google Scholar
SLIK, W. F., AIBA, S., BREARLEY, F. Q., CANNON, C. H., FORSHED, O., KITAYAMA, K., NAGAMASU, H., NILUS, R., PAYNE, J., PAOLI, G., POULSEN, A. D., RAES, N., SHEIL, D., SIDIYASA, K., SUZUKI, E. & VAN VALKENBURG, J. L. C. H. 2010. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. Global Ecology and Biogeography 19:5060.Google Scholar
SMITH, A. C. 1948. An ascent of Koroyanitu. Proceedings of the National Academy of Sciences USA 34:579585.Google Scholar
SMITH, A.C. 1979–1991. Flora Vitiensis nova: a new flora of Fiji (spermatophytes only). Volumes 1–5. Pacific Tropical Botanical Garden, Lawai, Hawai'i.Google Scholar
STEINBAUER, M. J., FIELD, R., GRYTNES, J. A., TRIGAS, P., AH‐PENG, C., ATTORRE, F., BIRKS, H. J. B., BORGES, P. A. V., CARDOSO, P., CHOU, C. H., DE SANCTIS, M., DE SEQUEIRA, M. M., DUARTE, M. C., ELIAS, R. B., FERNÁNDEZ‐PALACIOS, J. M., GABRIEL, R., GEREAU, R. E., GILLESPIE, R. G., GREIMLER, J., HARTER, D. E. V., HUANG, T. J., IRL, S. D. H., JEANMONOD, D., JENTSCH, A., JUMP, A. S., KUEFFER, C., NOGUÉ, S., OTTO, R., PRICE, J., ROMEIRAS, M. M., STRASBERG, D., STUESSY, T., SVENNING, J. C., VETAAS, O. R. & BEIERKUHNLEIN, C. 2016. Topography‐driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography 25:10971107.Google Scholar
STRONG, C. L., BOULTER, S. L., LAIDLAW, M. J., MAUNSELL, S. C., PUTLAND, D. & KITCHING, R. L. 2011. The physical environment of an altitudinal gradient in the rainforest of Lamington National Park, southeast Queensland. Memoirs of the Queensland Museum 55:251270.Google Scholar
THAMAN, R. 1996. The biodiversity of Koroyanitu National Park. Domodomo 10:2851.Google Scholar
TRIGAS, P., PANITSA, M., TSIFTSIS, S. & MOREAU, C. S. 2013. Elevational gradient of vascular plant species richness and endemism in Crete – the effect of post-isolation mountain uplift on a continental island system. PLoS ONE 8:e59425.Google Scholar
TURTON, S. M. & SEXTON, G. J. 1996. Environmental gradients across four rainforest-open forest boundaries in northeastern Queensland. Austral Ecology 21:245254.Google Scholar