Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:29:34.531Z Has data issue: false hasContentIssue false

The vegetation of Brazilian ‘murundus’ – the island-effect on the plant community

Published online by Cambridge University Press:  10 July 2009

Ary Teixeira De Oliveira-Filho*
Affiliation:
Departamento de Ciências Florestais, Escola Superior de Agricultura de Lavras, 37200, Lavras, MG, Brazil

Abstract

The ‘campos de murundus’ (carthmound fields) are typical landscapes of the cerrado (savanna) region of Central Brazil and are characterized by many rounded earthmounds called ‘murundus’ which are scattered over a grassland surface. As these areas are normally liable to seasonal water-logging, the earthmounds are true habitat islands capable of bearing woody plants typical of the cerrado, which are normally very intolerant of root inundation. The vegetation of an area of murundus field at Cuiaba, in the State of Mato Grosso, Central Brazil, was surveyed for the purpose of evaluating the island-effect on the plant community growing on the mounds/islands. Two main aspects were considered: the influence of the size of the mound and the differences between the types of cerrado occurring on the mounds and on the areas surrounding the murundus field. Most plant species occurring on the mounds were also present in the flora of the surrounding cerrado. However, only a fraction of these species was able to colonize the mounds successfully. The number of species on the mounds was found to be significantly correlated with mound area. Speciesarea relationships were better described with the power model S = C(Az) than with the exponential model S = C + z (logA) (fitted with linear regression). The mound size also had a strong influence on the spatial distribution of the species on the surface of the mounds. The species were organized in an increasing number of concentric topographic belts corresponding to a gradient of soil depth above the Hooding level.

Resumo

(A vegetação dos murundus do Brasil Central – o efeito ilha sobre a comunidade vegetal). ‘Campos de murundus’ são paisagens típicas da região do cerrado, no Brazil Central, caracterizadas por incontaveis montes de terra arredondados, os murundus, que se acham distribuídos sobre a superficic de um campo. Como estas áreas são normalmente sujeitas a excesso hídrico estacional, os murundus tornam-se verdadciras ilhas ecológícas capazes de abrigar plantas lenhosas de cerrado, as quais são normalmente muito intolerantes à saturação hidrica no solo. A vegetação dc uma árca de campo de murundus em Cuiabá, Mato Grosso, foi inventariada com o propósito de avaliar o efeito ilha na comunidade vegetal que cresce sobre os murundus/ilhas. Dois aspectos principals foram considerados: a influência da área do murundu e as difcrenças e semelhanças entre o cerrado dos murundus e o cerrado das áreas circunvizinhas ao campo. A maioria das espécies de plantas dos murundus também foi encontrada no cerrado circunvizinho. Contudo, apenas uma parte destas espécies demonslrou capacidade para colonizar com sucesso os murundus. Foi encontrada uma significativa correlação entre o número de espécies de plantas e a área do murundu. As relaçãoes espécie-área foram melhor descritas pelo modelo log-log; S = C(Az); do que pelo modelo exponencial; S = C + z (logA) (ajustados por regressão linear). O tamanho das ilhas demonstrou exercer também uma grande influência na distribuição espacial da comunidade vegetal. As espécies se mostraram organizadas em um número crescente de anéis topográficos concêntricos corrcspondentes a um gradiente de profundidade do solo acima do nîvel das inundações.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Brower, J. E. & Zar, J. H. 1984. Field and laboratory methods for general ecology. Wm. C. Brown, Dubuque.Google Scholar
Buckley, R. 1982. The habitat-unit model of island biogeography. Journal of Biogeography 13:6970.CrossRefGoogle Scholar
Cole, M. M. 1960. Cerrado, caatinga and pantanal; the distribution and origin of savanna vegetation of Brazil. Geographical Journal 126:168179.CrossRefGoogle Scholar
Connor, E. F. & McCoy, E. D. 1979. The statistics and biology of the species-area relationship. American Naturalist 113:791833.CrossRefGoogle Scholar
Cunha, C. N., Campos, M. M. & Silva, M. Q. 1983. Estudos biologicos preliminares de uma area de cerrado inunddvel, transicao entre cerrado e pantanal (Mimoso – Santo Antonio do Leverger – MT). Universidade Federal de Mato Grosso, Cuiaba.Google Scholar
Diniz de Araujo Neto, M., Furley, P. A., Haridasan, M. & Johnson, C. E. 1986. The murundus of the cerrado region of Central Brazil. Journal of Tropical Ecology 2:1735.Google Scholar
Eiten, G. 1972. The cerrado vegetation of Brazil. The Botanical Review 38:201341.CrossRefGoogle Scholar
Everitt, B. 1980. Cluster analysis. Halsted, N. York.Google Scholar
Furley, P. A. 1986. Classification and distribution of murundus in the cerrado of Central Brazil. Journal of Biogeography 13:265268.CrossRefGoogle Scholar
Furley, P. A. & Ratter, J. A. 1988. Soil resources and communities of central Brazilian cerrado and their development. Journal of Biogeography 15:97108.CrossRefGoogle Scholar
Gauch, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gentry, A. H. 1992. Bignoniaceae, Part 2 (Tribe Tecomeae). Flora Neotropica Monograph 25:1370.Google Scholar
Goodland, R. 1971. A physiognomic analysis of the ‘cerrado’ vegetation of Central Brazil. Journal of Ecology 59:411419.CrossRefGoogle Scholar
Gottsberger, G. & Silberbauer-Gottsberger, I. 1983. Dispersal and distribution in the cerrado vegetation of Brazil. Sonderbaende des Naturwissenschaftlichen Vereins in Hamburg 7:315352.Google Scholar
Hill, M. O. 1979. DECORANA – a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca.Google Scholar
Macarthur, R. H. & Wilson, E. O. 1963. An equilibrium theory of insular biogeography. Evolution 17:373387.Google Scholar
Macarthur, R. H. & Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton.Google Scholar
Mathews, A. G. A. 1977. Studies on termites from the Mato Grosso State, Brazil. Academia Brasileira de Ciencias, Rio de Janeiro.Google Scholar
Matteucci, S. D. & Colma, A. 1982. Metodologia para el estudio de la vegetation. General Secretariat of the Organization of American States, Washington.Google Scholar
Møller, T. R. & Rørdan, C. P. 1985. Species numbers of vascular plants in relation to area, isolation and age of ponds in Denmark. Oikos 45:816.CrossRefGoogle Scholar
Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. Wiley, New York.Google Scholar
Nilsson, S. G. & Nilsson, I. N. 1978. Species richness and dispersal of vascular plants to islands in Lake Möckeln, Southern Sweden. Ecology 59:473480.CrossRefGoogle Scholar
Oliveira-Filho, A. T. 1992. Floodplain murundus of Central Brazil: evidence for the termite-origin hypothesis. Journal of Tropical Ecology 8:119.CrossRefGoogle Scholar
Oliveira-Filho, A. T. & Furley, P. A. 1990. Monchão, cocuruto, murundu. Ciência Hoje 61:3037.Google Scholar
Oliveira-Filho, A. T. & Martins, F. R. 1991. Comparative study of five cerrado areas in southern Mato Grosso, Brazil. Edinburgh Journal of Botany 48:307332.CrossRefGoogle Scholar
Oliveira-Filho, A. T., Ratter, J. A. & Shepherd, G. J. 1990. Floristic composition and community structure of a Central Brazilian gallery forest. Flora 184:103117.Google Scholar
Oliveira-Filho, A. T., Shepherd, G. J., Martins, F. R. & Stubblebine, W. H. 1989. Environmental factors affecting physiognomic and floristic variation in an area of cerrado in central Brazil. Journal of Tropical Ecology 5:413431.CrossRefGoogle Scholar
Prance, G. T. & Schaller, G. B. 1982. Preliminary study of some vegetation types of the Pantanal, Mato Crosso, Brazil. Brittonia 34:228251.CrossRefGoogle Scholar
Preston, F. W. 1962. The canonical distribution of commonness and rarity. Part I. Ecology 43:185215, Part II. Ecology 43:410–432.CrossRefGoogle Scholar
Ratter, J. A. 1987. Notes on the vegetation of the Parque Nacional do Araguaia (Brazil). Notes of the Royal Botanic Garden Edinburgh 44:311342.Google Scholar
Ratter, J. A., Pott, A., Vali, J. P., Cunha, C. N. & Haridasan, M. 1988. Observations on woody vegetation types in the Pantanal and at Corumba, Brazil. Notes of the Royal Botanic Garden Edinburgh. 45:503525.Google Scholar
Ratter, J. A., Richards, P. W., Argent, G. & Gifford, D. R. 1973. Observations on the vegetation of northeastern Mato-Grosso I. The woody vegetation types of the Xavantina-Cachimbo Expedition area. Philosophical Transactions of the Royal Society of London. B. Biological Sciences 266:449492.Google Scholar
Rydin, H. & Borgegård, S-O. 1988. Plant species richness on islands over a century of primary succession: Lake Hjälmaren. Ecology 69:916927.Google Scholar
Sarmiento, G. & Monasterio, M. 1971. Ecología de las sabanas de America Tropical. Analisis macroecológico de los llanos de Calabozo, Venezuela. Caracas, Cuadernos Geográficos n. 4.Google Scholar
Tüxen, R. & Ellenberg, H. 1937. Der systematische und der ökologische Gruppenwert. Ein Beitrag zur Begriffsbildung und Methodik der Pflanzensoziologie. Mitteilungen der Florist-soziologischen Arbeitsgeminschaft 3.Google Scholar